WANG Nan, LI Yongsheng, SHEN Wenhao, JIANG Wenliang, LI Qiang, JIAO Qisong. Source Parameters and Rapid Simulation of Strong Ground Motion of the Ms6.8 Earthquake on January 7, 2025 in Dingri (Xizang,China) Derived from InSAR Observation[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 404-411. DOI: 10.13203/j.whugis20250022
Citation: WANG Nan, LI Yongsheng, SHEN Wenhao, JIANG Wenliang, LI Qiang, JIAO Qisong. Source Parameters and Rapid Simulation of Strong Ground Motion of the Ms6.8 Earthquake on January 7, 2025 in Dingri (Xizang,China) Derived from InSAR Observation[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 404-411. DOI: 10.13203/j.whugis20250022

Source Parameters and Rapid Simulation of Strong Ground Motion of the Ms6.8 Earthquake on January 7, 2025 in Dingri (Xizang,China) Derived from InSAR Observation

More Information
  • Received Date: January 14, 2025
  • Objectives 

    On January 7, 2025, an Ms 6.8 earthquake struck Dingri County, Shigatse City, Xizang Autonomous Region,China, resulting in numerous casualties. This earthquake took place within the Lhasa block of the Qinghai-Tibet Plateau. To swiftly ascertain the seismogenic structure of this earthquake and gain a precise understanding of its source mechanism, this study utilized ascending data from the Lutan-1 (LT-1) satellite and descending data from the Sentinel-1 satellite to extract surface coseismic deformation.

    Methods 

    This deformation data served as constraint information for the inversion of geometric parameters and slip distribution of the seismogenic fault.

    Results 

    The findings reveal that the earthquake-affected areas primarily exhibited near east-west extension deformation, with the maximum deformation in the line of sight direction attaining 2 m. The inversion outcomes demonstrate that the earthquake occurred on a normal fault with a strike of 187° and a dip angle of 40°, exhibiting a maximum slip of 6 m and a simulated moment magnitude of 7.1. By simulating earthquake intensity based on the estimated fault slip model, it was found that the maximum intensity of this earthquake could reach level Ⅸ.

    Conclusions 

    The integrated application of interferometry synthetic aperture radar seismic coseismic deformation field and a two-step fault parameter inversion algorithm achieved a rapid acquisition of the earthquake's source mechanism and rupture parameters. This approach offers swift and precise data support for earthquake emergency response, intensity estimation, and damage analysis.

  • [1]
    中国新闻网. 最新:西藏定日县地震已致126人遇难[OL]. https://mp.weixin.qq.com/s/htgnfCsmDhQwYeztT8mrIA, 2025.

    China News Service. Latest: Earthquake in Dingri County, Xizang has Resulted in 126 Fatalities[OL]. https://mp.weixin.qq.com/s/htgnfCsmDhQwYeztT8mrIA, 2025.
    [2]
    中国地震局地球物理研究所. 2025年1月7日西藏定日6.8级地震的震源特征[OL]. https://mp.weixin.qq.com/s/-nRSfgMCb5b6UU_OqDoB2w,2025.

    Institute of Geophysics, China Earthquake Administration. Source Characteristics of the Ms 6.8 Earthquake in Dingri, Xizang on January 7, 2025[OL]. https : //mp.weixin.qq.com/s/-nRSfgMCb5b6UU_OqDoB2w,2025.
    [3]
    中国地震灾害防御中心. 2025年1月7日西藏定日6.8级地震发生的地质构造背景[OL]. https://mp.weixin.qq.com/s/R98iqfLIwW_fAEjb5roe7g,2025.

    China Earthquake Disaster Prevention Center. Geological Structural Background of the Ms 6.8 Earthquake in Dingri, Xizang on January 7, 2025[OL]. https://mp.weixin.qq.com/s/R98iqfLIwW_fAEjb5roe7g,2025.
    [4]
    ZEBKER H A, ROSEN P A,Goldstein R M,et al.On the Derivation of Coseismic Displacement Fields Using Differential Radar Interferometry:The Landers Earthquake[C]// Journal of Geophysical Research: Solid Earth, 1994, 99(B10): 19617-19634.
    [5]
    BAMLER R,HARTL P. Synthetic Aperture Radar Interferometry[J].Inverse Problems, 1998, 14(4): R1.
    [6]
    LI Z H, ELLIOTT J R, FENG W P, et al. The 2010 Mw 6.8 Yushu (Qinghai, China) Earthquake: Constraints Provided by InSAR and Body Wave Seismology[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B10): B10302.
    [7]
    李永生, 申文豪, 温扬茂, 等. 2015年尼泊尔Mw 7.8地震震源机制InSAR反演及强地面运动模拟[J]. 地球物理学报, 2016, 59(4): 1359-1370.

    LI Yongsheng, SHEN Wenhao, WEN Yangmao, et al. Source Parameters for the 2015 Nepal Earthquake Revealed by InSAR Observations and Strong Ground Motion Simulation[J]. Chinese Journal of Geophysics, 2016, 59(4): 1359-1370.
    [8]
    李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897.

    LI Zhenhong, HAN Bingquan, LIU Zhenjiang, et al. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897.
    [9]
    吴珍汉, 胡道功, 吴中海, 等. 青藏高原中段活动断层运动速度及驱动机理[J]. 地球学报, 2005, 26(2): 99-104.

    WU Zhenhan, HU Daogong, WU Zhonghai, et al. Slip Rates and Driving Mechanism of Active Faults in Middle Tibetan Plateau[J]. Acta Geosicientia Sinica, 2005, 26(2): 99-104.
    [10]
    黄婷, 吴中海, 韩帅, 等. 西藏日喀则地区的活断层基本特征及地震灾害潜在风险评估[J]. 地震科学进展, 2024, 54(10): 696-711.

    HUANG Ting, WU Zhonghai, HAN Shuai, et al. The Basic Characteristics of Active Faults in the Region of Xigaze, Xizang and the Assessment of Potential Earthquake Disaster Risks[J]. Progress in Earthquake Sciences, 2024, 54(10): 696-711.
    [11]
    LIN H Y, DENG Y K, ZHANG H, et al. On the Processing of Dual-Channel Receiving Signals of the Lutan-1 SAR System[J]. Remote Sensing, 2022, 14(3): 515.
    [12]
    李永生, 李强, 焦其松, 等. 陆地探测一号SAR卫星星座在地震行业的应用与展望[J]. 武汉大学学报(信息科学版), 2024, 49(10): 1741-1752.

    LI Yongsheng, LI Qiang, JIAO Qisong, et al. Application of Lutan-1 SAR Satellite Constellation to Earthquake Industry and Its Prospect[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1741-1752.
    [13]
    中国地震局. 地质所、四川局、西藏局联合调查团队发现定日地震的同震垂直位错量达3 m[OL]. https://mp.weixin.qq.com/s/qtB9yU9E6TlfQ4HrF5Hybw,2025.

    China Earthquake Administration. The Joint Investigation Team from the Institute of Geology, Sichuan Bureau, and Xizang Bureau Found that the Coseismic Vertical Displacement of the Dingri Earthquake Reached 3 m[OL]. https://mp.weixin.qq.com/s/qtB9yU9E6TlfQ4HrF5Hybw,2025.
    [14]
    冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学进展, 2010, 25(4): 1189-1196.

    FENG Wanpeng, LI Zhenhong. A Novel Hybrid PSO/Simplex Algorithm for Determining Earthquake Source Parameters Using InSAR Data[J]. Progress in Geophysics, 2010, 25(4): 1189-1196.
    [15]
    张庆云, 李永生, 罗毅, 等. 2016年意大利阿马特里切Mw 6.2地震震源机制InSAR反演[J]. 武汉大学学报(信息科学版), 2019, 44(1): 118-124.

    ZHANG Qingyun, LI Yongsheng, LUO Yi, et al. Source Parameters for the 2016 Mw 6.2 Italy Amatrice Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 118-124.
    [16]
    OKADA Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154.
    [17]
    HANKS T C, MCGUIRE R K. The Character of High-Frequency Strong Ground Motion[J]. Bulletin of the Seismological Society of America, 1981, 71(6): 2071-2095.
    [18]
    BOORE D. Stochastic Simulation of High-Frequency Ground Motions Based on Seismological Models of the Radiated Spectra[J]. Bulletin of the Seismological Society of America, 1983, 73: 1865-1894.
    [19]
    陈刚, 李茂峰, 李克华,等.基于随机振动模型的强地面运动数值模拟及其在广西灵山M 634地震中的应用[J]. 中国地震, 2023, 39(4): 832-844.

    CHEN Gang, LI Maofeng, LI Kehua,et al.Strong Ground Motion Simulation of the M 634 Lingshan Guangxi Earthquake Base on Stochastic Finite Fault Modeling [J]. Earthquake Research in China, 2023, 39(4): 832-844.
    [20]
    ALLEN T I, WALD D J. Topographic Slope as a Proxy for Seismic Site-Conditions (Vs30) and Amplification Aaround the Globe[R]. Open-File Report 2007-1357, Reston, Virginia,USA,2007.
    [21]
    丁宝荣, 孙景江, 杜轲, 等. 地震烈度与峰值加速度、峰值速度相关性研究[J]. 地震工程与工程振动, 2017, 37(2): 26-36.

    DING Baorong, SUN Jingjiang, DU Ke, et al. Study on Relationships Between Seismic Intensity and Peak Ground Acceleration, Peak Ground Velocity[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(2): 26-36.
    [22]
    中国地震局地球物理研究所. 应急管理部中国地震局发布西藏定日6.8级地震烈度图[OL]. https://mp.weixin.qq.com/s/YQO_rz-HYH9s3lRlndmGeg,2025.

    Institute of Geophysics, China Earthquake Administration. The Ministry of Emergency Management and China Earthquake Administration Released the Intensity Map of the Ms 6.8 Earthquake in Dingri, Xizang[OL]. https://mp.weixin.qq.com/s/YQO_rz-HYH9s3lRlndmGeg,2025.
  • Related Articles

    [1]YU Yi, LI Xue, CHEN Wei, LI Chengtao, SUN Zhen. Investigation of Focal Mechanism and Coseismic Slip Distribution for Haiti Mw 7.2 Earthquake in 2021[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2232-2240. DOI: 10.13203/j.whugis20220085
    [2]DU Jing, SONG Chuang, LI Zhenhong, LIU Zhenjiang, LIU Haihui, YU Chen, PENG Jianbing. Triggering Mechanism and Impact on Infrastructure of the 2022 Iran Earthquake Sequence Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1962-1971. DOI: 10.13203/j.whugis20240106
    [3]MAO Hongfei, XIE Lei, JIANG Kun, SUN Kai, WANG Jiageng, XU Wenbin. Source Parameter Inversion of Moderate to Strong Earthquakes and Its Comparison with Earthquake Catalogs in Tibetan Plateau based on InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240124
    [4]BIAN Weiwei, WU Jicang, ZHANG Lei, GAO Yu. Temporal and Spatial Statistical Analysis of Strong Earthquakes and Spatial Distribution Characteristics of InSAR Coseismic Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 875-886. DOI: 10.13203/j.whugis20220176
    [5]JIANG Zaisen, SHAO Zhigang, LIU Xiaoxia, ZOU Zhenyu, WU Yanqiang. Crustal Deformation Associated with Seismogenic Process of Chinese Mainland Strong Earthquakes and Identification of Approximation to Seismogenic Process in the Late Seismogenic Stage[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 807-819. DOI: 10.13203/j.whugis20220204
    [6]ZHANG Qingyun, LI Yongsheng, ZHANG Jingfa. Focal Mechanism Inversion and 3D Deformation Field Acquisition of Iran Mw7.3 Earthquake in 2017[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 196-204. DOI: 10.13203/j.whugis20180384
    [7]LI Shuiping, WANG Qi, CHEN Gang, QIAO Xuejun, YANG Shaomin, HE Ping, CHEN Chao. Coseismic Vertical Displacement and Fault Motion Model of the Nepal Mw7.9 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1489-1496. DOI: 10.13203/j.whugis20160057
    [8]DENG Dongping, ZHU Liangbao, WANG Qingdong, CHEN Haopeng. Improved Weighting for Focal Mechanism Inversion:Application to the 2013 Lushan Earthquake Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 616-623. DOI: 10.13203/j.whugis20150072
    [9]WEN Yangmao, XU Caijun, LIU Yang, HE Ping. Source Parameters of 2008 Qinghai Dachaidan Mw 6.3 Earthquake from InSAR Inversion and Automated Fault Discretization Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 458-462.
    [10]JIN Shuanggen, ZHU Wenyao. Motion and Active Deformation of South America Plate[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 358-362.

Catalog

    Article views (357) PDF downloads (163) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return