ZHANG Qingyun, LI Yongsheng, ZHANG Jingfa. Focal Mechanism Inversion and 3D Deformation Field Acquisition of Iran Mw7.3 Earthquake in 2017[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 196-204. DOI: 10.13203/j.whugis20180384
Citation: ZHANG Qingyun, LI Yongsheng, ZHANG Jingfa. Focal Mechanism Inversion and 3D Deformation Field Acquisition of Iran Mw7.3 Earthquake in 2017[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 196-204. DOI: 10.13203/j.whugis20180384

Focal Mechanism Inversion and 3D Deformation Field Acquisition of Iran Mw7.3 Earthquake in 2017

Funds: 

The National Natural Science Foundation of China 41704051

Research Grants from the Institute of Crustal Dynamics, China Earthquake Administration ZDJ2018-16

Research Grants from the Institute of Crustal Dynamics, China Earthquake Administration ZDJ2017-29

Civil Aerospace Project D010102

More Information
  • Author Bio:

    ZHANG Qingyun, PhD candidate, specializes in InSAR processing. E-mail:zhangqingyun1107@163.com

  • Corresponding author:

    LI Yongsheng, PhD, associate researcher. E-mail:yongsheng2009@gmail.com

  • Received Date: March 01, 2019
  • Published Date: February 04, 2020
  • On November 12, 2017, a strong Mw7.3 earthquake occurred in the Sarpol-e Zahab region on the Iranian-Iraqi border, killing more than 500 people. Earthquakes cause serious damage, but do not cause rupture of seismogenic faults on the earth's surface. In order to study the focal mechanism of earthquakes and the crustal deformation caused by earthquakes, this paper uses ALOS-2 and Sentinel-1 satellite data, obtains the seismic co-seismic deformation field by over-differential interferometry, and then uses the resolution constrained quadtree sampling method to observe it. The data are sampled for down sampling. On this basis, a two-step inversion algorithm is used to subdivide the fault plane, and the precise geometric parameters and the optimal fault slip distribution are obtained by inversion. The inversion results show that the seismogenic fault is a fault with thrust and dextral strike slip, and the fault strike is determined 347°. The inclination angle is 15°. The distribution of seismic slip is mainly distributed in16-19 km. The depth range and the maximum tilting slip are 4.5 m. Based on the inversion of the fault model, the 3D seismic deformation field is obtained. The results of the 3D seismic deformation field show that the deformation caused by the earthquake is mainly in the vertical direction, and the vertical uplift deformation reaches 78.8 cm. The inversion results of the focal mechanism and the three-dimensional deformation field results are in good agreement with the seismological research results.
  • [1]
    USGS. M7.3-29 km S of Halabjah, Iraq[OL]. https://earthquake.usgs.gov/earthquakes/eventpage/us2000bmcg#moment-tensor, 2017
    [2]
    Mahani A B, Kazemian J. Strong Ground Motion from the November 12, 2017, M7.3 Kermanshah Earthquake in Western Iran[J]. Journal of Seismology, 2018, 22(6):1339-1358 doi: 10.1007/s10950-018-9761-x
    [3]
    Kobayashi T, Morishita Y, Yarai H, et al. InSAR-Derived Crustal Deformation and Reverse Fault Motion of the 2017 Iran-Iraq Earthquake in the Northwest of the Zagros Orogenic Belt[J]. Geospatial Info, 2018, 66:1-9
    [4]
    Wang Zhiheng, Zhang Rui, Wang Xiaowen, et al. Retrieving Three-Dimensional Co-seismic Deformation of the 2017 Mw7.3 Iraq Earthquake by Multi-sensor SAR Images[J]. Remote Sensing, 2018, 10:1-14
    [5]
    He Ping, Wen Yangmao, Xu Caijun, et al. High-Quality Three-Dimensional Displacement Fields from New-Generation SAR Imagery:Application to the 2017 Ezgeleh, Iran, Earthquake[J]. Journal of Geodesy, 2018, 22(6):1339-1358 doi: 10.1007/s00190-018-1183-6
    [6]
    Ding Kaihua, He Ping, Wen Yangmao, et al. The 2017 Mw7.3 Ezgeleh, Iran Earthquake Determined from InSAR Measurements and Teleseismic Waveforms[J]. Geophysical Journal International, 2018, 215(3):1728-1738 doi: 10.1093/gji/ggy371
    [7]
    Vajedian S, Motagh M, Mousavi Z, et al. Coseismic Deformation Field of the Mw7.312 November 2017 Sarpol-e Zahab (Iran) Earthquake:A Decoupling Horizon in the Northern Zagros Mountains Inferred from InSAR Observations[J]. Remote Sensing, 2018, 10(10):1-22 https://www.onacademic.com/detail/journal_1000040856990010_89a7.html
    [8]
    谭凯, 王琪, 申重阳.用大地测量数据反演2001年昆仑山地震[J].大地测量与地球动力学, 2004, 24(3):47-50 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200403010

    Tan Kai, Wang Qi, Shen Chongyang. Using Geodetic Data to Inverse Co-seismic Dislocation of 2001 Kunlun Earthquake[J]. Journal of Geodesy and Geodynamics, 2004, 24(3):47-50 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200403010
    [9]
    屠泓为, 汪荣江, 刁法启, 等.运用SDM方法研究2001年昆仑山口西Ms8.1地震破裂分布:GPS和InSAR联合反演的结果[J].地球物理学报, 2016, 56(6):2103-2112 http://www.cqvip.com/QK/94718X/201606/669259927.html

    Tu Hongwei, Wang Rongjiang, Diao Faqi, et al. Slip Model of the 2001 Kunlun Mountain Ms8.1 Earthquake by SDM:Joint Inversion from GPS and InSAR Data[J]. Chinese Journal of Geophysics, 2016, 56(6):2103-2112 http://www.cqvip.com/QK/94718X/201606/669259927.html
    [10]
    Li Zhenhong, Elliott J R, Feng Wanpeng, et al. The 2010 Mw6.8 Yushu (Qinghai, China) Earthquake:Constraints Provided by InSAR and Body Wave Seismology[J]. Journal of Geophysical Research Solid Earth, 2011, 116(B10):1-16 http://www.researchgate.net/publication/233811751_The_2010_Mw_6.8_Yushu_(Qinghai_China)_earthquake_Constraints_provided_by_InSAR_and_body_wave_seismology
    [11]
    Jahani S, Callot J P, Letouzey J, et al. The Eastern Termination of the Zagros Fold-and-Thrust Belt, Iran:Structures, Evolution, and Relationships Between Salt Plugs, Folding, and Faulting[J]. Tectonics, 2009, 28(6):1-22 http://www.researchgate.net/publication/251428649_The_eastern_termination_of_the_Zagros_Fold-and-Thrust_Belt_Iran_Structures_evolution_and_relationships_between_salt_plugs_folding_and_faulting
    [12]
    Hatzfeld D, Molnar P. Comparisons of the Kinematics and Deep Structures of the Zagros and Himalaya and of the Iranian and Tibetan Plateaus and Geodynamic Implications[J]. Reviews of Geophysics, 2010, 48(2):1-48 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2009RG000304
    [13]
    Stern R J, Johnson P. Continental Lithosphere of the Arabian Plate:A Geologic, Petrologic, and Geophysical Synthesis[J]. Earth-Science Reviews, 2010, 101(1-2):29-67 doi: 10.1016/j.earscirev.2010.01.002
    [14]
    Berberian M. Master "Blind" Thrust Faults Hidden Under the Zagros Folds:Active Basement Tectonics and Surface Morphotectonics[J]. Tectonophysics, 1995, 241(3):193-195 doi: 10.1016-0040-1951(94)00185-C/
    [15]
    Oveisi B, Lavé J, Beek P V D, et al. Thick-and Thin-Skinned Deformation Rates in the Central Zagros Simple Folded Zone (Iran) Indicated by Displacement of Geomorphic Surfaces[J]. Geophysical Journal International, 2010, 176(2):627-654 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ebb8ebd8d3193a8bf5a20d52af6024fb
    [16]
    Motaghi K, Shabanian E, Kalvandi F. Underplating Along the Northern Portion of the Zagros Suture Zone, Iran[J]. Geophysical Journal International, 2017, 210(1):375-389 doi: 10.1093/gji/ggx168
    [17]
    Agard P, Omrani J, Jolivet L, et al. Congervence History Across Zagros (Iran):Contraints from Collisional and Earlier Deformation[J]. International Journal of Earth Sciences, 2005, 94(3):401-419 doi: 10.1007/s00531-005-0481-4
    [18]
    Taymaz T, Nilfouroushan F, Yolsal-Çevikbilen S, et al. Co-seismic Crustal Deformation of the 12 November 2017 Mw7.4 Sar-Pol-Zahab (Iran) Earthquake: Integration of Analysis Based on DInSAR and Seismological Observations[C]. 2018 EGU General Assembly, Vienna, Austria, 2018
    [19]
    Lohman R B, Simons M. Some Thoughts on the Use of InSAR Data to Constrain Models of Surface Deformation:Noise Structure and Data Downsampling[J]. Geochemistry Geophysics Geosystems, 2005, 6(1):359-361 doi: 10.1029-2004GC000841/
    [20]
    Feng Wanpeng, Li Zhenhong, Elliott J R, et al. The 2011 Mw6.8 Burma Earthquake:Fault Constraints Provided by Multiple SAR Techniques[J]. Geophysical Journal International, 2013, 195(1):650-660 doi: 10.1093/gji/ggt254
    [21]
    冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J].地球物理学进展, 2010, 25(4):1189-1196 doi: 10.3969/j.issn.1004-2903.2010.04.007

    Feng Wanpeng, Li Zhenhong. A Novel Hybrid PSO/Simplex Algorithm for Determining Earthquake Source Parameters Using InSAR Data[J]. Progress in Geophysics, 2010, 25(4):1189-1196 doi: 10.3969/j.issn.1004-2903.2010.04.007
    [22]
    Li Yongsheng, Jiang Wenliang, Zhang Jingfa, et al. Space Geodetic Observations and Modeling of 2016 Mw5.9 Menyuan Earthquake:Implications on Seismogenic Tectonic Motion[J]. Remote Sensing, 2016, 8(6):519-530 doi: 10.3390/rs8060519
    [23]
    张庆云, 李永生, 罗毅, 等. 2016年意大利阿马特里切Mw6.2地震震源机制InSAR反演[J].武汉大学学报·信息科学版, 2019, 44(1):118-124 http://ch.whu.edu.cn/CN/abstract/abstract6339.shtml

    Zhang Qingyun, Li Yongsheng, Luo Yi, et al. Source Parameters for the 2016 Mw6.2 Italy Amatrice Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1):118-124 http://ch.whu.edu.cn/CN/abstract/abstract6339.shtml
    [24]
    Okada Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985, 92(2):1018-1040 http://www.researchgate.net/publication/283623389
    [25]
    Global Centroid Moment Tensor. Available Online[OL]. http://www.globalcmt.org/CMTsearch.html, 2017
    [26]
    Barnhart W D, Brengman C M J, Li S, et al. Ramp-Flat Basement Structures of the Zagros Mountains Inferred from Co-seismic Slip and After Slip of the 2017 Mw7.3 Darbandikhan, Iran/Iraq Earthquake[J]. Earth & Planetary Science Letters, 2018, 496:96-107
    [27]
    Feng Wanpeng, Sergey S, Rafael A, et al. Geodetic Constraints of the 2017 Mw7.3 Sarpol Zahab, Iran Earthquake and Its Implications on the Structure and Mechanics of the North-West Zagros Thrust-Fold Belt[J]. Geophysical Research Letters, 2018, 45(14):6853-6861 doi: 10.1029/2018GL078577
    [28]
    Harris R A, Segall P. Detection of a Locked Zone at Depth on the Parkfield, California, Segment of the San Andreas Fault[J]. Journal of Geophysical Research Solid Earth, 1987, 92(B8):7945-7962 doi: 10.1029/JB092iB08p07945
    [29]
    Jonsson S. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1377-1389 doi: 10.1785/0120000922
    [30]
    Stark P B, Parker R L. Bounded-Variable Least-Squares:An Algorithm and Applications[J]. Comput Stat, 1992, 10:129-141
    [31]
    Murat U. Preliminary Seismological Report on the November 12, 2017 Northern Iraq/Western Iran Earthquake[R]. Disaster Management Application and Research Center, Sakarya University, Turkey, 2017
    [32]
    温扬茂, 冯怡婷.地震破裂模型约束的中国阿里地震三维形变场[J].武汉大学学报·信息科学版, 2018, 43(9):1369-1375 http://ch.whu.edu.cn/CN/abstract/abstract6199.shtml

    Wen Yangmao, Feng Yiting. Three-Dimensional Deformation Field of Ali Earthquake from InSAR Observations and Earthquake Rupture Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9):1369-1375 http://ch.whu.edu.cn/CN/abstract/abstract6199.shtml
  • Related Articles

    [1]SHU Bao, LIU Hui, ZHANG Jinsheng, PAN Guofu, JIANG Jun. Performance Assessment of Partial Ambiguity Resolution Based on BDS/GPS Combined Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 989-994, 1001. DOI: 10.13203/j.whugis20150017
    [2]Liu Yanyan, Ye Shirong, Jiang Peng, Chen Hao, Huang Zhihua, Du Zhongjin. Instantaneous Ambiguity Resolution of Short Baselines Using BeiDou Triple Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 209-213.
    [3]Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133.
    [4]TANG Weiming, LI Di, CHI Fengming. Research on Single Epoch Orientation Algorithm of BeiDou Navigation Satellite System[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1014-1017.
    [5]YAN Ziping, DING Lele, HANG Enxing, YU Xingwang. A New Method of Ambiguity Resolution in Network RTK Between Reference Stations[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 295-298.
    [6]GAO Chengfa, ZHAO Yi, WAN Dejun. Restricting GPS Integer Ambigulity by Improved LAMBDA Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 744-747.
    [7]TANG Weiming, SUN Hongxing, LIU Jingnan. Ambiguity Resolution of Single Epoch Single Frequency Data withBaseline Length Constraint Using LAMBDA Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5): 444-446.
    [8]LIU Genyou, OU Jikun. Kinematic Positioning Algorithm with Coordinate Function Constraint[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 389-393. DOI: 10.13203/j.whugis2004.05.004
    [9]LIU Genyou, ZHU Yaozhong, HAN Baomin. Damped LAMBDA Algorithm for Single Epoch GPS Positioning[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3): 195-197.
    [10]LIU Genyou, OU Jikun. Determining Attitude with Single Epoch GPS Algorithm and Its Precision Analysis[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 732-735.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return