BIAN Weiwei, WU Jicang, ZHANG Lei, GAO Yu. Temporal and Spatial Statistical Analysis of Strong Earthquakes and Spatial Distribution Characteristics of InSAR Coseismic Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 875-886. DOI: 10.13203/j.whugis20220176
Citation: BIAN Weiwei, WU Jicang, ZHANG Lei, GAO Yu. Temporal and Spatial Statistical Analysis of Strong Earthquakes and Spatial Distribution Characteristics of InSAR Coseismic Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 875-886. DOI: 10.13203/j.whugis20220176

Temporal and Spatial Statistical Analysis of Strong Earthquakes and Spatial Distribution Characteristics of InSAR Coseismic Deformation Field

Funds: 

The National Natural Science Foundation of China 42074022

The National Natural Science Foundation of China 41874004

More Information
  • Author Bio:

    BIAN Weiwei, PhD candidate, specializes in geodynamics. E-mail: bianww@tongji.edu.cn

  • Corresponding author:

    WU Jicang, PhD, professor.E-mail: jcwu@tongji.edu.cn

  • Received Date: May 21, 2022
  • Available Online: June 08, 2022
  • Published Date: June 04, 2022
  •   Objectives  It is of important scientific significance for understanding the mechanism of strong earthquakes and evaluating the activity of strong earthquakes around the world.
      Methods  We collected the information on 198 strong earthquakes (Mw≥7.5) in the world from 1976 to early 2022, and statistically analyzed the temporal and spatial distribution of strong earthquakes and focal depth, and the proportion of strong earthquake types. Combined with the published typical strong earthquake interferometric synthetic aperture radar (InSAR) deformation map, we analyzed the spatial distribution characteristics of strong earthquake coseismic deformation.
      Results  The spatial distribution of strong earthquakes is banded, mainly located in the Pacific Rim seismic belt and the Himalayan-Mediterranean seismic belt. The time distribution of strong earthquakes has the phenomenon of alternating active periods and quiet periods. Most of the 198 earthquakes occurred in the ocean, and most of them are thrust fault earthquakes and shallow source earthquakes. The coseismic deformation of terrestrial strong earthquakes mainly focuses on the strip area near the two sides of the seismogenic fault. The farther away from the fault, the faster the deformation attenuation, and the deformation is asymmetrical about the fault.
      Conclusions  Since 1976, the activity of global strong earthquakes above Mw 7.5 shows an overall upward trend. The InSAR deformation field can present the spatial range and distribution characteristics of the coseismic deformation of strong earthquakes in detail. InSAR crustal deformation monitoring technology can be used to splice the deformation information fragments of active faults distributed in different locations around the world. It is possible to reveal the full-cycle seismogenic deformation process of strong land earthquakes.
  • [1]
    Bucknam R, Plafker G, Sharp R V. Fault Movement (Afterslip) Following the Guatemala Earthquake of February 4, 1976[J]. Geology, 1978, 6: 170-173
    [2]
    万永革, 盛书中, 李祥, 等. 2015年尼泊尔强震序列对中国大陆的应力影响[J]. 地球物理学报, 2015, 58(11): 4277-4286 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511033.htm

    Wan Yongge, Sheng Shuzhong, Li Xiang, et al. Stress Influence of the 2015 Nepal Earthquake Sequence on Chinese Mainland[J]. Chinese Journal of Geophysics, 2015, 58(11): 4277-4286 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511033.htm
    [3]
    黄禄渊, 张贝, 程惠红, 等. 2015年智利Illapel Mw 8.3地震同震效应及其对南美大陆地震危险性影响[J]. 地球物理学报, 2017, 60(1): 163-173 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701015.htm

    Huang Luyuan, Zhang Bei, Cheng Huihong, et al. The Co-Seismic Effect of the 2015 Chile Illapel Mw 8.3 Earthquake and Its Effect on Seismic Risk of South America[J]. Chinese Journal of Geophysics, 2017, 60(1): 163-173 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701015.htm
    [4]
    Rehman K, Burton P W. Seismicity and Seismic Hazard Parameters in and Around Pakistan[J]. Journal of Seismology, 2020, 24(3): 635-653 doi: 10.1007/s10950-020-09917-4
    [5]
    Rastogi B K, Gupta H K, Mandal P, et al. The Deadliest Stable Continental Region Earthquake Occurred near Bhuj on 26 January 2001[J]. Journal of Seismology, 2001, 5(4): 609-615 doi: 10.1023/A:1012228507533
    [6]
    Anderson J G, Lei Y. Nonparametric Description of Peak Acceleration as a Function of Magnitude, Distance, and Site in Guerrero, Mexico[J]. Bulletin of the Seismological Society of America, 1994, 84: 1003-1017
    [7]
    Yoshida Y, Abe K. Source Mechanism of the Luzon, Philippines Earthquake of July 16, 1990[J]. Geophysical Research Letters, 1992, 19(6): 545-548 doi: 10.1029/91GL02467
    [8]
    Kuge K, Kase Y, Urata Y, et al. Rupture Characteristics of the 2005 Tarapaca, Northern Chile, Intermediate-Depth Earthquake: Evidence for Heterogeneous Fluid Distribution Across the Subducting Oceanic Plate?[J]. Journal of Geophysical Research, 2010, 115(B9): B09305
    [9]
    Liu C L, Zheng Y, Xiong X, et al. Rupture Processes of the 2012 September 5 Mw 7.6 Nicoya, Costa Rica Earthquake Constrained by Improved Geodetic and Seismological Observations[J]. Geophysical Journal International, 2015, 203(1): 175-183 doi: 10.1093/gji/ggv295
    [10]
    Gomberg J, Sherrod B. Crustal Earthquake Triggering by Modern Great Earthquakes on Subduction Zone Thrusts[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(2): 1235-1250 doi: 10.1002/2012JB009826
    [11]
    Obara K, Kato A. Connecting Slow Earthquakes to Huge Earthquakes[J]. Science, 2016, 353(6296): 253-257 doi: 10.1126/science.aaf1512
    [12]
    Avouac J P. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 233-271 doi: 10.1146/annurev-earth-060614-105302
    [13]
    Savage J C, Prescott W H. Asthenosphere Readjustment and the Earthquake Cycle[J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B7): 3369-3376 doi: 10.1029/JB083iB07p03369
    [14]
    Savage J C. Equivalent Strike-Slip Earthquake Cycles in Half-Space and Lithosphere-Asthenosphere Earth Models[J]. Journal of Geophysical Research, 1990, 95(B4): 4873 doi: 10.1029/JB095iB04p04873
    [15]
    郭安宁. 全球地震活动周期的黄金分割特征[J]. 地球物理学报, 2001, 44(S1): 77-82

    Guo Anning. Characteristics of Golden Section of the Global Earthquake Activity Periods[J]. Chinese Journal of Geophysics, 2001, 44(S1): 77-82
    [16]
    Ross Z E, Trugman D T, Hauksson E, et al. Searching for Hidden Earthquakes in Southern California[J]. Science, 2019, 364(6442): 767-771 doi: 10.1126/science.aaw6888
    [17]
    闻学泽, 张培震, 杜方, 等. 2008年汶川8.0级地震发生的历史与现今地震活动背景[J]. 地球物理学报, 2009, 52(2): 444-454 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902017.htm

    Wen Xueze, Zhang Peizhen, Du Fang, et al. The Background of Historical and Modern Seismic Activities of the Occurrence of the 2008 Ms 8.0 Wenchuan, Sichuan, Earthquake[J]. Chinese Journal of Geophysics, 2009, 52(2): 444-454 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200902017.htm
    [18]
    许才军, 汪建军, 熊维. 地震应力触发回顾与展望[J]. 武汉大学学报·信息科学版, 2018, 43(12): 2085-2092 doi: 10.13203/j.whugis20180149

    Xu Caijun, Wang Jianjun, Xiong Wei. Retrospection and Perspective for Earthquake Stress Triggering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2085-2092 doi: 10.13203/j.whugis20180149
    [19]
    Thatcher W. How the Continents Deform: The Evidence from Tectonic Geodesy[J]. Annual Review of Earth and Planetary Sciences, 2009, 37: 237-262 doi: 10.1146/annurev.earth.031208.100035
    [20]
    Tajima F, McNally K C. Seismic Rupture Patterns in Oaxaca, Mexico[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B5): 4263-4275 doi: 10.1029/JB088iB05p04263
    [21]
    Tavera H, Buforn E. Source Mechanism of Earthquakes in Peru[J]. Journal of Seismology, 2001, 5: 519-540 doi: 10.1023/A:1012027430555
    [22]
    Zobin V M. Influence of Rivera-Cocos Plate Boundary Geodynamics on Earthquake Intensity Patterns: The 9 October 1995 (Mw 8.0) and 21 (22) January 2003 (Mw 7.5) Earthquakes[J]. Pure and Applied Geophysics, 2011, 168(8/9): 1355-1361
    [23]
    孙建宝, 徐锡伟, 沈正康, 等. 基于线弹性位错模型及干涉雷达同震形变场反演1997年玛尼Mw 7.5级地震参数-Ⅰ. 均匀滑动反演[J]. 地球物理学报, 2007, 50(4): 1097-1110 doi: 10.3321/j.issn:0001-5733.2007.04.017

    Sun Jianbao, Xu Xiwei, Shen Zhengkang, et al. Parameter Inversion of the 1997 Mani Earthquake from InSAR Co-Seismic Deformation Field Based on Linear Elastic Dislocation Model-Ⅰ. Uniform Slip Inversion[J]. Chinese Journal of Geophysics, 2007, 50(4): 1097-1110 doi: 10.3321/j.issn:0001-5733.2007.04.017
    [24]
    陈祖荫, 王碧泉, 范丰, 等. 强震孕震过程中的特征选择[J]. 地球物理学报, 1985, 28(6): 588-598 doi: 10.3321/j.issn:0001-5733.1985.06.005

    Chen Zuyin, Wang Biquan, Fan Feng, et al. Feature Selection in the Preparation of a Strong Earthquake[J]. Chinese Journal of Geophysics, 1985, 28(6): 588-598 doi: 10.3321/j.issn:0001-5733.1985.06.005
    [25]
    Ekström G, Nettles M, Dziewoński A M. The Global CMT Project 2004-2010: Centroid-Moment Tensors for 13 017 Earthquakes[J]. Physics of the Earth and Planetary Interiors, 2012, 200/201: 1-9 doi: 10.1016/j.pepi.2012.04.002
    [26]
    Pastén D, Comte D. Multifractal Analysis of Three Large Earthquakes in Chile: Antofagasta 1995, Valparaiso 1985, and Maule 2010[J]. Journal of Seismology, 2014, 18(4): 707-713 doi: 10.1007/s10950-014-9432-5
    [27]
    Swenson J L, Beck S L. Source Characteristics of the 12 November 1996 Mw 7.7 Peru Subduction Zone Earthquake[J]. Pure and Applied Geophysics, 1999, 154(3/4): 731-751
    [28]
    单新建, 李建华, 张桂芳. 1997年玛尼7.9级地震的构造环境和地表破裂带特征[J]. 地球物理学报, 2006, 49(3): 831-837 doi: 10.3321/j.issn:0001-5733.2006.03.027

    Shan Xinjian, Li Jianhua, Zhang Guifang. The Tectonic Condition and the Feature of Surface Rupture Zone of the Mani Earthquake (Ms 7.9) in 1997[J]. Chinese Journal of Geophysics, 2006, 49(3): 831-837 doi: 10.3321/j.issn:0001-5733.2006.03.027
    [29]
    Ambraseys N N. The Earthquake of 10 July 1894 in the Gulf of Izmit (Turkey) and Its Relation to the Earthquake of 17 August 1999[J]. Journal of Seismology, 2001, 5(1): 117-128 doi: 10.1023/A:1009871605267
    [30]
    Holtkamp S G, Pritchard M E, Lohman R B. Earthquake Swarms in South America[J]. Geophysical Journal International, 2011, 187(1): 128-146 doi: 10.1111/j.1365-246X.2011.05137.x
    [31]
    Dziewonski A M, Chou T A, Woodhouse J H. Determination of Earthquake Source Parameters from Waveform Data for Studies of Global and Regional Seismicity[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B4): 2825-2852 doi: 10.1029/JB086iB04p02825
    [32]
    Bilek S L, Ruff L J. Analysis of the 23 June 2001 Mw = 8.4 Peru Underthrusting Earthquake and Its Aftershocks[J]. Geophysical Research Letters, 2002, 29(20): 21 doi: 10.1029/2002GL015130
    [33]
    Wright T J, Elliott J R, Wang H, et al. Earthquake Cycle Deformation and the Moho: Implications for the Rheology of Continental Lithosphere[J]. Tectonophysics, 2013, 609: 504-523 doi: 10.1016/j.tecto.2013.07.029
    [34]
    宋治平, 尹继尧, 薛艳, 等. 全球及各地震区带强震活动周期特征[J]. 地球物理学报, 2013, 56(6): 1868-1876 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306010.htm

    Song Zhiping, Yin Jiyao, Xue Yan, et al. The Global and Sub-Zone Period Characteristics for Large Earthquakes[J]. Chinese Journal of Geophysics, 2013, 56(6): 1868-1876 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306010.htm
    [35]
    薛艳, 刘杰, 姜祥华. 全球及主要构造带大震活动状态研究[J]. 地球物理学报, 2021, 64(12): 4425-4436 doi: 10.6038/cjg2021P0036

    Xue Yan, Liu Jie, Jiang Xianghua. Process and Trend of Great Earthquakes in the Globe and Main Zones[J]. Chinese Journal of Geophysics, 2021, 64(12): 4425-4436 doi: 10.6038/cjg2021P0036
    [36]
    卓钰如, Kanamori H. . 中国三个大地震的震源参数及讨论[J]. 地球物理学报, 1990, 33(4): 489-496 doi: 10.3321/j.issn:0001-5733.1990.04.015

    Zhuo Yuru, Kanamori H. Source Parameters of Three Chinese Large Earthquakes and Discussion[J]. Chinese Journal of Geophysics, 1990, 33(4): 489-496 doi: 10.3321/j.issn:0001-5733.1990.04.015
    [37]
    陈运泰, 林邦慧, 王新华, 等. 用大地测量资料反演的1976年唐山地震的位错模式[J]. 地球物理学报, 1979, 22(3): 201-217 doi: 10.3321/j.issn:0001-5733.1979.03.001

    Chen Yuntai, Lin Banghui, Wang Xinhua, et al. A Dislocation Model of the Tangshan Earthquake of 1976 from the Inversion of Geodetic Data[J]. Chinese Journal of Geophysics, 1979, 22(3): 201-217 doi: 10.3321/j.issn:0001-5733.1979.03.001
    [38]
    Ruiz S, Madariaga R. Historical and Recent Large Megathrust Earthquakes in Chile[J]. Tectonophysics, 2018, 733: 37-56 doi: 10.1016/j.tecto.2018.01.015
    [39]
    Tajima F. Study of the Source Processes of the 1965, 1968 and 1978 Oaxaca Earthquakes Using Short-Period Records[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B3): 1867-1873 doi: 10.1029/JB089iB03p01867
    [40]
    Okal E A. Historical Seismicity and Seismotectonic Context of the Great 1979 Yapen and 1996 Biak, Irian Jaya Earthquakes[J]. Pure and Applied Geophysics, 1999, 154(3/4): 633-675
    [41]
    Mogi K. Deep Seismic Activities Preceding the Three Large 'Shallow' Earthquakes off South-East Hokkaido, Japan—The 2003 Tokachi-Oki Earthquake, the 1993 Kushiro-Oki Earthquake and the 1952 Tokachi-Oki Earthquake[J]. Earth, Planets and Space, 2004, 56(3): 353-357 doi: 10.1186/BF03353064
    [42]
    Wiens D A, McGuire J J. The 1994 Bolivia and Tonga Events: Fundamentally Different Types of Deep Earthquakes?[J]. Geophysical Research Letters, 1995, 22(16): 2245-2248 doi: 10.1029/95GL01598
    [43]
    王卫民, 赵连锋, 李娟, 等. 1999年台湾集集地震震源破裂过程[J]. 地球物理学报, 2005, 48(1): 132-147 doi: 10.3321/j.issn:0001-5733.2005.01.019

    Wang Weimin, Zhao Lianfeng, Li Juan, et al. Rupture Process of the Chi-Chi (Taiwan) Earthquake in 1999[J]. Chinese Journal of Geophysics, 2005, 48(1): 132-147 doi: 10.3321/j.issn:0001-5733.2005.01.019
    [44]
    Geist E L, Parsons T. Triggering of Tsunamigenic Aftershocks from Large Strike-Slip Earthquakes: Analysis of the November 2000 New Ireland Earthquake Sequence[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(10): 1-18
    [45]
    程威, 胡小刚, 郝晓光. 2001年11月14日昆仑山大地震震前扰动信号的再研究[J]. 地球物理学报, 2018, 61(4): 1298-1306 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201804007.htm

    Cheng Wei, Hu Xiaogang, Hao Xiaoguang. A Further Study of Anomalous Tremors Before the 14 November 2001 Kunlun Ms 8.1 Earthquake[J]. Chinese Journal of Geophysics, 2018, 61(4): 1298-1306 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201804007.htm
    [46]
    Dreger D S. Kinematic and Dynamic Rupture Models of the November 3, 2002 Mw 7.9 Denali, Alaska, Earthquake[J]. Geophysical Research Letters, 2004, 31(4): L04605
    [47]
    瞿武林, 张贝, 黄禄渊, 等. 2004年苏门答腊地震的几个断层滑动模型的全球同震位移对比[J]. 地球物理学报, 2016, 59(8): 2843-2858 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608011.htm

    Qu Wulin, Zhang Bei, Huang Luyuan, et al. Comparisons of Global Coseismic Displacements from Several Fault Slip Models for the 2004 Sumatra Earthquake[J]. Chinese Journal of Geophysics, 2016, 59(8): 2843-2858 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608011.htm
    [48]
    Zakharenkova I E, Shagimuratov I I, Tepenitzina N Y, et al. Anomalous Modification of the Ionospheric Total Electron Content Prior to the 26 September 2005 Peru Earthquake[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(15): 1919-1928 doi: 10.1016/j.jastp.2008.06.003
    [49]
    万永革, 沈正康, 尚丹. 2005年10月巴基斯坦Mw 7.6地震对余震的触发研究[J]. 中国地震, 2006, 22(3): 277-286 doi: 10.3969/j.issn.1001-4683.2006.03.008

    Wan Yongge, Shen Zhengkang, Shang Dan. Study on Triggering Effect of the October, 2005 Pakistan Mw 7.6 Earthquake on Its Aftershocks[J]. Earthquake Research in China, 2006, 22(3): 277-286 doi: 10.3969/j.issn.1001-4683.2006.03.008
    [50]
    张国宏, 屈春燕, 宋小刚, 等. 基于InSAR同震形变场反演汶川Mw 7.9地震断层滑动分布[J]. 地球物理学报, 2010, 53(2): 269-279 doi: 10.3969/j.issn.0001-5733.2010.02.005

    Zhang Guohong, Qu Chunyan, Song Xiaogang, et al. Slip Distribution and Source Parameters Inverted from Co-Seismic Deformation Derived by InSAR Technology of Wenchuan Mw 7.9 Earthquake[J]. Chinese Journal of Geophysics, 2010, 53(2): 269-279 doi: 10.3969/j.issn.0001-5733.2010.02.005
    [51]
    Barnhart W D, Hayes G P, Samsonov S V, et al. Breaking the Oceanic Lithosphere of a Subducting Slab: The 2013 Khash, Iran Earthquake[J]. Geophysical Research Letters, 2014, 41(1): 32-36 doi: 10.1002/2013GL058096
    [52]
    王卫民, 郝金来, 何建坤, 等. 2013年巴基斯坦俾路支Mw 7.7地震震源过程研究[J]. 地球物理学报, 2018, 61(3): 872-879 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201803006.htm

    Wang Weimin, Hao Jinlai, He Jiankun, et al. Rupture Process of the 2013, Balochistan Mw 7.7 Earthquake, Pakistan[J]. Chinese Journal of Geophysics, 2018, 61(3): 872-879 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201803006.htm
    [53]
    屈春燕, 左荣虎, 单新建, 等. 尼泊尔Mw 7.8地震InSAR同震形变场及断层滑动分布[J]. 地球物理学报, 2017, 60(1): 151-162 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701014.htm

    Qu Chunyan, Zuo Ronghu, Shan Xinjian, et al. Coseismic Deformation Field of the Nepal Mw 7.8 Earthquake from Sentinel-1A/InSAR Data and Fault Slip Inversion[J]. Chinese Journal of Geophysics, 2017, 60(1): 151-162 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701014.htm
    [54]
    Heidarzadeh M, Gusman A R, Harada T, et al. Tsunamis from the 29 March and 5 May 2015 Papua New Guinea Earthquake Doublet (Mw 7.5) and Tsunamigenic Potential of the New Britain Trench[J]. Geophysical Research Letters, 2015, 42(14): 5958-5965 doi: 10.1002/2015GL064770
    [55]
    Li C Y, Peng Z G, Yao D D, et al. Abundant Aftershock Sequence of the 2015 Mw 7.5 Hindu Kush Intermediate-Depth Earthquake[J]. Geophysical Journal International, 2018, 213(2): 1121-1134 doi: 10.1093/gji/ggy016
    [56]
    Ruiz S, Tavera H, Poli P, et al. The Deep Peru 2015 Doublet Earthquakes[J]. Earth and Planetary Science Letters, 2017, 478: 102-109 doi: 10.1016/j.epsl.2017.08.036
    [57]
    Wen Y Y, Ma K F, Fry B. Multiple-Fault, Slow Rupture of the 2016 Mw 7.8 Kaikōura, New Zealand, Earthquake: Complementary Insights from Teleseismic and Geodetic Data[J]. Bulletin of the Seismological Society of America, 2018, 108(3B): 1774-1783 doi: 10.1785/0120170285
    [58]
    He L J, Feng G C, Li Z W, et al. Source Parameters and Slip Distribution of the 2018 Mw 7.5 Palu, Indonesia Earthquake Estimated from Space-Based Geodesy[J]. Tectonophysics, 2019, 772: 228216 doi: 10.1016/j.tecto.2019.228216
    [59]
    Hu Y P, Yagi Y, Okuwaki R, et al. Back-Propagating Rupture Evolution Within a Curved Slab During the 2019 Mw 8.0 Peru Intraslab Earthquake[J]. Geophysical Journal International, 2021, 227(3): 1602-1611
    [60]
    Ye L L, Lay T, Kanamori H. Anomalously Low Aftershock Productivity of the 2019 Mw 8.0 Energetic Intermediate-Depth Faulting Beneath Peru[J]. Earth and Planetary Science Letters, 2020, 549: 116528 doi: 10.1016/j.epsl.2020.116528
    [61]
    许才军, 何平, 温扬茂, 等. InSAR技术及应用研究进展[J]. 测绘地理信息, 2015, 40(2): 1-9 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201502003.htm

    Xu Caijun, He Ping, Wen Yangmao, et al. Recent Advances in SAR Interferometry and Its Applications[J]. Journal of Geomatics, 2015, 40(2): 1-9 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201502003.htm
    [62]
    许才军, 何平, 温扬茂, 等. 日本2011 Tohoku-Oki Mw 9.0级地震的同震形变及其滑动分布反演: GPS和InSAR约束[J]. 武汉大学学报·信息科学版, 2012, 37(12): 1387-1391 http://ch.whu.edu.cn/article/id/391

    Xu Caijun, He Ping, Wen Yangmao, et al. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake: Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391 http://ch.whu.edu.cn/article/id/391
    [63]
    程惠红, 张贝, 张怀, 等. 2016年11月13日新西兰凯库拉(Kaikoura)Mw 7.8地震同震位移和应力数值分析[J]. 地球物理学报, 2017, 60(7): 2641-2651 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201707012.htm

    Cheng Huihong, Zhang Bei, Zhang Huai, et al. Calculation of the Co-Seismic Deformation and Stress Changes of the Kaikoura Mw 7.8 Earthquake, Nov. 13, 2016[J]. Chinese Journal of Geophysics, 2017, 60(7): 2641-2651 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201707012.htm
    [64]
    Motagh M, Schurr B, Anderssohn J, et al. Subduction Earthquake Deformation Associated with 14 November 2007, Mw 7.8 Tocopilla Earthquake in Chile: Results from InSAR and Aftershocks[J]. Tectonophysics, 2010, 490(1/2): 60-68
    [65]
    Zhang B C, Ding X L, Amelung F, et al. Impact of Ionosphere on InSAR Observation and Coseismic Slip Inversion: Improved Slip Model for the 2010 Maule, Chile, Earthquake[J]. Remote Sensing of Environment, 2021, 267: 112733 doi: 10.1016/j.rse.2021.112733
    [66]
    Qu C Y, Zuo R H, Shan X J, et al. Coseismic and Post-Seismic Deformation Fields Mapped Using Satellite Radar Interferometry and Fault Slip Inversion of the 2015 Mw 8.3 Illapel Earthquake, Chile[J]. Journal of Geodynamics, 2017, 104: 36-48 doi: 10.1016/j.jog.2016.10.004
    [67]
    Pritchard M E, Norabuena E O, Ji C, et al. Geodetic, Teleseismic, and Strong Motion Constraints on Slip from Recent Southern Peru Subduction Zone Earthquakes[J]. Journal of Geophysical Research, 2007, 112(B3): B03307
    [68]
    Motagh M, Wang R J, Walter T R, et al. Coseismic Slip Model of the 2007 August Pisco Earthquake (Peru) as Constrained by Wide Swath Radar Observations[J]. Geophysical Journal International, 2008, 174(3): 842-848 doi: 10.1111/j.1365-246X.2008.03852.x
    [69]
    He P, Hetland E A, Wang Q, et al. Coseismic Slip in the 2016 Mw 7.8 Ecuador Earthquake Imaged from Sentinel-1A Radar Interferometry[J]. Seismological Research Letters, 2017, 88(2A): 277-286 doi: 10.1785/0220160151
  • Related Articles

    [1]WANG Nan, LI Yongsheng, SHEN Wenhao, JIANG Wenliang, LI Qiang, JIAO Qisong. Source Parameters and Rapid Simulation of Strong Ground Motion of the Ms6.8 Earthquake on January 7, 2025 in Dingri (Xizang,China) Derived from InSAR Observation[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 404-411. DOI: 10.13203/j.whugis20250022
    [2]LIU Xiaojie, ZHAO Chaoying, LI Bin, WANG Wenda, ZHANG Qin, GAO Yang, CHEN Liquan, WANG Baohang, HAO Junming, YANG Xiaohui. Identification and Dynamic Deformation Monitoring of Active Landslides in Jishishan Earthquake Area (Gansu, China) Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 297-312. DOI: 10.13203/j.whugis20240054
    [3]YANG Mengshi, LIAO Mingsheng, CHANG Ling, HANSSEN Ramon F.. Interpretation of Multi-epoch InSAR Deformation for Urban Scenes: A Problem Analysis and Literature Review[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1643-1660. DOI: 10.13203/j.whugis20230289
    [4]CHEN Mingkai, XU Guangyu, WANG Leyang. InSAR 3D Coseismic Surface Deformation Inversion: A Combination Method Considering Deformation Gradient[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1349-1358. DOI: 10.13203/j.whugis20220284
    [5]XIAO Ruya, HE Xiufeng. Deformation Monitoring of Reservoirs and Dams Using Time-Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1334-1341. DOI: 10.13203/j.whugis20170327
    [6]LIU Qi, YUE Guosen, DING Xiaobing, YANG Kun, FENG Guangcai, XIONG Zhiqiang. Temporal and Spatial Characteristics Analysis of Deformation Along Foshan Subway Using Time Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1099-1106. DOI: 10.13203/j.whugis20190025
    [7]CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461
    [8]LI Peng, LI Zhenhong, LI Tao, SHI Chuang, LIU Jingnan. Wide-Swath InSAR Geodesy and Its Applications to Large-Scale Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1195-1202. DOI: 10.13203/j.whugis20150587
    [9]XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391.
    [10]XU Caijun, HE Ping, WEN Yangmao, YANG Yonglin. Crustal Deformation Monitoring of Xianshuihe Fault by CR-InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 302-305.
  • Other Related Supplements

  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (847) PDF downloads (124) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return