LI Shuiping, WANG Qi, CHEN Gang, QIAO Xuejun, YANG Shaomin, HE Ping, CHEN Chao. Coseismic Vertical Displacement and Fault Motion Model of the Nepal Mw7.9 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1489-1496. DOI: 10.13203/j.whugis20160057
Citation: LI Shuiping, WANG Qi, CHEN Gang, QIAO Xuejun, YANG Shaomin, HE Ping, CHEN Chao. Coseismic Vertical Displacement and Fault Motion Model of the Nepal Mw7.9 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1489-1496. DOI: 10.13203/j.whugis20160057

Coseismic Vertical Displacement and Fault Motion Model of the Nepal Mw7.9 Earthquake

Funds: 

The National Natural Science foundation of China 41274036

The National Natural Science foundation of China 41274037

the China Postdoctoral Science Foundation 2015M57228

the Basic Fund of Hubei Subsurface Multi-scale Imaging Key Laboratory SMIL-2015-01

the Fundamental Research Funds for the Central Universities CUGL150810

the Basic Research Fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education of China 13-02-11

the Basic Research Fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education of China 14-01-01

More Information
  • Author Bio:

    LI Shuiping, PhD candidate, specializes in space geodesy research. E-mail: cug_lsp@foxmail.com

  • Corresponding author:

    CHEN Gang, phD, professor, E-mail:ddwhcg@cug.edu.cn

  • Received Date: May 19, 2016
  • Published Date: October 04, 2017
  • The 2015 Nepal Mw7.9 earthquake occurred in the central segment of the Himalayan collision zone, where the rigid Indian plate thrusts beneath the Tibetan Plateau. The published focal mechanism solution shows this earthquake was dominated by thrust slip but minor right-lateral strike slip, so a significant vertical deformation appears on the surface caused by this event. Accurate coseismic vertical displacements in this region provide us a scarce chance to understand the long term uplift of the Himalaya and southern Tibet. By processing the resurvey 'in-situ' GPS data, we obtained a coseismic GPS horizontal displacement field at high precision. In combination with the coseismic GPS displacements and the L-band InSAR line of sight (LOS) observations, we extract the coseismic vertical deformation field due to the Nepal earthquake with a mean uncertainty of 1~2 cm and spatial resolution of 1 km×1 km. The result shows that the Kathmandu was uplifted ~0.95 m after the main shock. In particular, the Mount Everest and Shishapangma subsided~2-3 cm and ~20 cm, respectively. The two-dimensional elastic half-space dislocation model suggests that the mean rupture width of the Nepal earthquake was~60 km and the average coseismic slip reached 4 m. Our results indicate that the slip deficit of this event was equivalent to a moment magnitude of Mw 7.89 assuming a rupture length of 120 km and rigidity of 30 GPa, which is consistent with seismological estimation.The 2015 Nepal earthquake broke the trend of long term uplift in the central segment of higher Himalaya during an interseismic period. Whether this segment will continue to subside or uplift after the event can be discriminated by continuous post-seismic geodetic measurements.
  • [1]
    腾吉文, 张中杰, 王光杰, 等.喜马拉雅碰撞造山带的深层动力过程与陆-陆碰撞新模型[J].地球物理学报, 1999, 42(4):481-494 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199904007.htm

    Teng Jiwen, Zhang Zhongjie, Wang Guangjie, et al. The Deep Internal Dynamical Processes and New Model of Continental-continental Collision in Himalayan Collision Orogenic Zone[J]. Chinese Journal of Geophysics, 1999, 42(4): 481-494 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199904007.htm
    [2]
    Bilham R, Larson K, Freymueller J T, et al. GPS Measurements of Present-day Convergence Across the Nepal Himalaya[J].Nature, 1997, 386: 61-64 doi: 10.1038/386061a0
    [3]
    Bilham R, Ambraseys N. Apparent Himalayan Slip Deficit from the Summation of Seismic Moments for Himalayan Earthquake, 1500-2000[J]. Current Science, 2005, 88(10):1 658-1 663 http://cat.inist.fr/?aModele=afficheN&cpsidt=17263749
    [4]
    He P, Wang Q, Ding K, et al. Source Model of the 2015 Mw 6.4 Pishan Earthquake Constrained by Interferometric Synthetic Aperture Radar and GPS: Insight Into Blind Rupture in the Western Kunlun Shan [J]. Geophysical Research Letters, 2016, 43:1511-1519 doi: 10.1002/2015GL067140
    [5]
    Avouac J P, Meng L, Wei S, et al. Lower Edge of Locked Main Himalayan Thrust Unzipped by the 2015 Gorkha Earthquake[J]. Nature Geoscience, 2015, 8: 708-711 doi: 10.1038/ngeo2518
    [6]
    Bilham R. Seismology: Raising Kathmandu [J], Nature Geoscience, 2015, 8(8):582-584 doi: 10.1038/ngeo2498
    [7]
    Galetzka J, Melgar D, Genrich J F, et al. Slip Pulse and Resonance of the Kathmandu Basin During the 2015 Gorkha Earthquake, Nepal [J]. Science, 2015, 349: 1 091-1 095 doi: 10.1126/science.aac6383
    [8]
    Grandin R, Vallee M, Satriano C, et al. Repture Process of the Mw=7.9 Gorkha Earthquake(Nepal):Insights into Himalaya Megathrust Segmentation[J]. Geophys Research Letters, 2015, 42: 8 373-8 382 doi: 10.1002/2015GL066044
    [9]
    Wang K, FialkoY. Slip Model of the 2015 Mw7.8 Gorkha (Nepal) Earthquake from Inversions of ALOS-2 and GPS Data[J]. Geophysical Research Letters, 2015, 42(18): 7 452-7 458 doi: 10.1002/2015GL065201
    [10]
    刘静, 纪晨, 张金玉, 等. 2015年4月25日尼泊尔Mw7.8级地震的孕震构造背景和特征[J].中国科学:地球科学, 2015, 60(27):2 640-2 655 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201527010.htm

    Liu Jing, Ji Chen, Zhang Jinyu, et al. Tectonic Setting and General Features of Coseismic Rupture of the 25 April, 2015 Mw 7.8 Gorkha, Nepal earthquake [J]. Science China: Earth Science, 2015, 60(27):2 640-2 655 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201527010.htm
    [11]
    苏小宁, 王振, 孟国杰, 等. GPS观测的2015年尼泊尔Ms8.1级地震震前应变积累及同震变形特征[J].科学通报, 2015, 60(22):2 115-2 123 http://www.cqvip.com/QK/94252X/201522/665696214.html

    Su Xiaoning, Wang Zhen, Meng Guojie, et al. Pre-seismic Strain Accumulation and Co-seismic Deformation of the 2015 Nepal Ms 8.1 Earthquake Observed by GPS[J]. Chinese Science Bulletin, 2015, 60(22): 2 115-2 123 http://www.cqvip.com/QK/94252X/201522/665696214.html
    [12]
    李瑜, 刘静, 梁宏, 等.全球定位系统测定的尼泊尔Mw7.8级地震同震位移[J].科学通报, 2015, 60(36):3 606-3 616 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb201536013&dbname=CJFD&dbcode=CJFQ

    Li Yu, Liu Jing, Liang Hong, et al. Co-seismic Displacement Field Associated with the 25 April, 2015 Mw 7.8 Nepal Earthquake Recorded by Global Positioning System[J]. Chinese Science Bulletin, 2015, 60(36):3 606-3 616 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb201536013&dbname=CJFD&dbcode=CJFQ
    [13]
    赵斌, 杜瑞林, 张锐, 等. GPS测定的尼泊尔Mw7.9和Mw7.3级地震同震形变场[J].科学通报, 2015, 60(28-29): 2 758-2 764 http://www.cqvip.com/QK/94252X/201528/666375776.html

    Zhao Bin, Du Ruilin, Zhang Rui, et al. Co-seismic Displacements Associated with the 2015 Nepal Mw7.9 Earthquake and Mw7.3 Aftershock Constrained by Global Positioning System Measurements [J]. Chinese Science Bulletin, 2015, 60(28-29):2 758-2 764 http://www.cqvip.com/QK/94252X/201528/666375776.html
    [14]
    Lindsey E O, Natsuaki R, Xu X, et al. Line of Sight Displacement from ALOS-2 Interferometry Mw 7.8 Gorkha Earthquake and Mw 7.3 Aftershock[J]. Geophysical Research Letters, 2015, 42:6 655-6 661 doi: 10.1002/2015GL065385
    [15]
    Freund L B, Barnett D M. A Two-dimensional Analysis of Surface Deformation Due to Dip-slip Faulting[J]. Bulletin of the Seismological Society of America, 1976, 66(3): 667-675 http://www.bssaonline.org/content/66/3/667.abstract
    [16]
    许才军, 何平, 温扬茂, 等.日本2011 Tohoku-Oki Mw 9.0级地震的同震形变及其滑动分布反演:GPS和InSAR约束[J], 武汉大学学报·信息科学版, 2012, 37(12):1 387-1 391 http://ch.whu.edu.cn/CN/abstract/abstract391.shtml

    Xu Caijun, He Ping, Wen Yangmao, et al. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake: Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12):1 387-1 391 http://ch.whu.edu.cn/CN/abstract/abstract391.shtml
    [17]
    Sandwell D T. Biharmonic Splines Interpolation of GEOS-3 and Seasat Altimeter Data[J]. Geophysical Research Letters, 1987, 14: 139-142 doi: 10.1029/GL014i002p00139
    [18]
    Paul W, David B. Interpolation with Splines in Tension a Green's Function Approach[J]. Mathematical Geology, 1998, 30:77-93 doi: 10.1023/A:1021713421882
    [19]
    陈小斌.中国陆地现今水平形变状况及其驱动机制[J].中国科学:地球科学, 2007, 37(8): 1 056-1 064 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200708009.htm

    Chen Xiaobin. Present-day Horizontal Deformation Status of Continental China and Its Driving Mechanism[J]. Science China: Earth Science, 2007, 50(11): 1 663-1 673 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200708009.htm
    [20]
    胡俊, 李志伟, 朱建军, 等.融合升降轨SAR干涉相位和幅度信息揭示地表三维形变场的研究[J].中国科学:地球科学, 2010, 40(3): 307-318 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201003005.htm

    Hu Jun, Li Zhiwei, Zhu Jianjun, et al. Inferring Three-dimensional Surface Displacement Field by Combining SAR Interferometric Phase and Amplitude Information of Ascending and Descending Orbits[J]. Science China: Earth Science, 2010, 40(3): 307-318 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201003005.htm
    [21]
    Ader T, Avouac J P, Jing L Z, et al. Convergence Rate Across the Nepal Himalaya and Interseismic Coupling on the Main Himalayan Thrust: Implications for Seismic Hazard[J]. Journal of Geophysical Research, 2012, 117, B04403 http://adsabs.harvard.edu/abs/2012JGRB..117.4403A
    [22]
    李杰, 乔学军, 杨少敏, 等.西南天山地表三维位移场及断层位错模型[J].地球物理学报, 2015, 58(10):3 517-3 529 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510008.htm

    Li Jie, Qiao Xuejun, Yang Shaomin, et al. Detachment Fault Model Characterized for the 3D Surface Displacement Field in the Southwestern Tian Shan[J]. Chinese Journal of Geophysics, 2015, 58(10): 3 517-3 529 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510008.htm
    [23]
    刘刚, 王琪, 乔学军, 等.用连续GPS与远震体波联合反演2015年尼泊尔中部Ms 8.1地震破裂过程[J].地球物理学报, 2015, 58(11):4 287-4 297 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511034.htm

    Liu Gang, Wang Qi, Qiao Xuejun, et al. The 25 April 2015 Nepal Ms 8.1 Earthquake Slip Distribution from Joint Inversion of Teleseismic, Static and High-rate GPS Data[J]. Chinese Journal of Geophysics, 2015, 58(11): 4 287-4 297 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511034.htm
  • Related Articles

    [1]DU Yan, NING Lize, XIE Mowen, BAI Yunfei, LI Heng, JIA Beining. A Prediction Model of Landslide Displacement in Reservoir Area Considering Time Lag Effect[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1347-1355. DOI: 10.13203/j.whugis20220133
    [2]XIAO Ruya, HE Xiufeng. Deformation Monitoring of Reservoirs and Dams Using Time-Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1334-1341. DOI: 10.13203/j.whugis20170327
    [3]ZHANG Yan, LV Pinji, LIU Jia. Impact of the Yangtze River Three Gorges Reservoir on Fault Activity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1497-1500. DOI: 10.13203/j.whugis20140983
    [4]HUANG Shengxiang, LUO Li. Stability Analysis and Results of the Landslide MonitoringDatum in the Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 367-372. DOI: 10.13203/j.whugis20120019
    [5]WU Xueling, REN Fu, NIU Ruiqing. Spatial Intelligent Prediction of Landslide Hazard Based on Multi-source Data in Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 963-968.
    [6]HU Teng, DU Ruilin, ZHANG Zhenhua, WU Yue. Simulation and Mechanism Analysis on Crustal Vertically Deformation in Three Gorges Reservoir Area Under the Condition of Reservoir Impoundment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 33-36.
    [7]WU Tao, YAN Huiwu, TANG Guigang. Prediction on Time Series Analysis of Water Quality in Yangtze Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2006, 31(6): 500-502.
    [8]DU Ruilin, QIAO Xuejun, YANG Shaomin, WANG Qi. Results of the Crustal Deformation by GPS Survey and Horizontal Strain Rate Fields in the Three Gorges Area[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 768-771.
    [9]SHI Dong, CHEN Jun, ZHU Qing. Oil-Gas Reservoir Evaluation Based on GIS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 592-596.
    [10]JIANG Fuzhen. Role of Gravimetry in Monitoring the Crustal Deformation of Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 679-682.
  • Cited by

    Periodical cited type(6)

    1. 李惠民,彭紫薇,李相如. 气候变化下干旱对大别山区植被的影响研究. 治淮. 2024(12): 44-46 .
    2. 谢萍,张双喜,金涛勇,韦瑜,蔡剑锋,许晨. 武汉市GRACE水储量变化与气象干旱关联趋势分析. 排灌机械工程学报. 2023(06): 624-629 .
    3. 胡艳茹,梁丽娇,何立平,许文锋,刘正学,兰波. 三峡水库蓄水前后库区及周边区域降水变化及其影响因素. 地理研究. 2023(07): 1921-1940 .
    4. 肖家豪,张双喜,韦瑜,蔡剑锋,洪敏. 基于GPS垂向位移测定云南地区陆地水储量及其对累积降雨的响应机制. 测绘通报. 2022(01): 61-65 .
    5. 咬登魁,段功豪. 基于季节性SARIMA模型的武汉市长序列降雨量趋势分析与预测. 地下水. 2022(02): 166-168 .
    6. 谢萍,张双喜,周吕,李庆隆,肖家豪,蔡剑锋. 武汉市中心城区地表形变与洪涝灾害防治新策略. 武汉大学学报(信息科学版). 2021(07): 1015-1024 .

    Other cited types(7)

Catalog

    Article views (1516) PDF downloads (368) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return