Citation: | LI Fu, SUN Yueqiang, XIA Junming, WANG Xianyi, DU Qifei, BAI Weihua, LIANG Hong, LUO Jin. Research on Spatial Range of GNSS-R Detection of Evaporation Duct in the Coastal Waters of China[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240330 |
[1] |
KANG S, ZHANG Y, WANG H. Atmospheric duct in troposphere environment[M]. Beijing:Science Press,2014:2-82.(康士峰,张玉生,王红光.对流层 大气波导[M].北京:科学出版社, 2014:2-82.)
|
[2] |
JIAO L, ZHANG Y. Study of the shadow zone of the radar in the atmospheric duct[J]. Journal of Xidian University,2004,(05):815-820.(焦林,张永刚.大气 波导条件下雷达电磁盲区的研究[J].西安电子科技大学学报,2004,(05):815-820.)
|
[3] |
REN S. Design and Implementation of The Shipborne Radar Performance Evaluation System in The Evaporation Duct[D]. Xinxiang:Henan Normal University, 2022.(任朔.蒸发波导环境下的舰船雷达性能评估系统设计与实现[D].新乡:河南师范大学, 2022.)
|
[4] |
ZHANG H, WANG H G, LI J R. Analysis on trans-horizon sea echoes of weather radar within an atmospheric duct process[J]. Chinese journal of radio science, 2022, 37(3):505-511.(in Chinese). DOI:10.12265/j.cjors.2021090(章晗,王红光,李建儒.一次大气波导过程天气雷达超视距海面回波分析[J].电波 科学学报, 2022, 37(3):505-511. DOI:10.12265/j.cjors.2021090)
|
[5] |
YU H, LIAO C, FENG J, et al. Analysis of Radar Target Scattering Echo With Surface Ducting in Large-Scale Environments Based on the PE-MoM Hybrid Method[J]. IEEE Antennas Wirel Propag Lett, 2023, 22(9):2295-9.
|
[6] |
ZHOU T, SUN T, HU H, et al. Analysis and Prediction of 100 km-Scale Atmospheric Duct Interference in TD-LTE Networks[J]. Journal of Communications and Information Networks, 2017, 2(1):66-80.
|
[7] |
YANG C, GUO L. Inferring the atmospheric duct from radar sea clutter using the improved artificial bee colony algorithm[J]. Int J Microw Wirel Technol, 2018, 10(4):437-45.
|
[8] |
WANG Y, CHEN Y, ZHOU T, et al. A Traceable Approach to Remote Interference Management for New Radio; proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), F 20-24 May 2019, 2019[C].
|
[9] |
LIU F, PAN J, ZHOU X, et al. Atmospheric ducting effect in wireless communications:Challenges and opportunities[J]. Journal of Communications and Information Networks, 2021, 6(2):101-9.
|
[10] |
WEI M, XIE W, ZHANG G. Research Based on Remote Interference Management; proceedings of the 17th IEEE International Wireless Communications and Mobile Computing, IWCMC 2021, June 28, 2021-July 2, 2021, Virtual, Online, China, F, 2021[C]. Institute of Electrical and Electronics Engineers Inc.
|
[11] |
ZHAO F L. Forming interference of atmospheric duct in 5G and avoid method[J]. Chinese journal of radio science, 2021, 36(1):109-115+126.(in Chinese). DOI:10.13443/j.cjors.2019110901(赵飞龙. 5G大气波导干扰形成条件及其规避方法研究[J].电波科学学报, 2021, 36(1):109-115+126. DOI: 10.13443/j.cjors.2019110901)
|
[12] |
DONG H, SONG L, HUA C, et al. Survey of the research and development on the maritimecommunication technology[J]. Telecommunications Science, 2022, 38(05):1-17.(董浩,宋亮,化存卿等.海上通信技术发展与研究综述[J].电信科学, 2022, 38(05):1-17.)
|
[13] |
ZHANG Y S, GUO X M,ZHAO Q, et al. Research status and thinking of atmospheric duct[J]. Journal of radio science, 2020, 35(6):813-831.(in Chinese). DOI:10.13443/j.cjors.2020072401(张玉生,郭相明,赵强,等.大气波导的研究现状与思考[J].电波科学学报, 2020, 35(6):813-831. DOI:10.13443/j.cjors.2020072401
|
[14] |
FOUNTOULAKIS V, EARLS C. Duct heights inferred from radar sea clutter using proper orthogonal bases[J]. Radio Sci, 2016, 51(10):1614-26.
|
[15] |
JI H, YIN B, ZHANG J, et al. Joint Inversion of Evaporation Duct Based on Radar Sea Clutter and Target Echo Using Deep Learning[J]. Electronics, 2022, 11(14):2157.
|
[16] |
JESKE H. State and Limits of Prediction Methods of Radar Wave Propagation Conditions Over Sea, Dordrecht, F, 1973[C]. Springer Netherlands.
|
[17] |
PAULUS R A. Practical application of an evaporation duct model[J]. Radio Sci, 1985, 20(4):887-96.
|
[18] |
MUSSON-GENON L, GAUTHIER S, BRUTH E. A simple method to determine evaporation duct height in the sea surface boundary layer[J]. Radio Sci, 1992, 27(05):635-44.
|
[19] |
BABIN S M, YOUNG G S, CARTON J A. A new model of the oceanic evaporation duct[J]. J Appl Meteorol Climatol, 1997, 36(3):193-204.
|
[20] |
Frederickson P., Davidson K., Goroch A.Operational Bulk Evaporation Duct Model for MORIAH Version 1.2, Naval Postgraduate School (2000), pp. 93943- 95114.
|
[21] |
FAIRALL C W, BRADLEY E F, HARE J E, et al. Bulk Parameterization of Air-Sea Fluxes:Updates and Verification for the COARE Algorithm[J]. Journal of Climate, 2003, 4):
|
[22] |
LIU C, HUANG J, JIANG C, et al. Modeling Evaporation Duct over Sea withPseudo-Refractivity and Similarity Theory[J]. Acta Electronica Sinica, 2001, 29(7):970-2.(刘成国,黄际英,江长荫等.用伪折射率和相似理论计算海上蒸发波导剖面[J].电子学报, 2001, 29(7):970-2.)
|
[23] |
YANG K, MA Y, SHI Y. Spatio-temporal distributions of evaporation duct forthe West Pacific Ocean[J]. Acta Physica Sinica, 2009, 58(10):7339-50.(杨坤 德,马远良,史阳.西太平洋蒸发波导的时空统计规律研究[J].物理学报, 2009, 58(10):7339-50.)
|
[24] |
CHEN Li. Statistical Characteristics Analysis of Atmospheric Ducts over China Seas and Numerical Modeling Study on Their Evolution Mechanism[D]. Qingdao:Ocean University of China, 2010.(陈莉.中国近海大气波导的统计特征分析及演变机理的数值研究[D].青岛:中国海洋大学, 2010.)
|
[25] |
YANG K, ZHANG Q, SHI Y, et al. On analyzing space-time distribution of evaporation duct height over the global ocean[J]. Acta Oceanol Sin, 2016, 35(7): 20-9.
|
[26] |
YANG S, LI X, WU C, et al. Application of the PJ and NPS evaporation duct models over the South China Sea (SCS) in winter[J]. PLoS One, 2017, 12(3): e0172284.
|
[27] |
GUO X, ZHAO D, ZHANG L, et al. A Comparison Study of Sensitivity on PJ and NPS Models in China Seas[J]. J Ocean Univ, 2019, 18(5):1022-30.
|
[28] |
YAN K. Theoretical model and characteristics of evaporation waveguide near the sea surface[M]. Beijing:Publishing House of Electronics Industry, 2022:31- 96.(杨坤德.近海面蒸发波导理论模型与特性[M].北京:电子工业出版社, 2022:31-96.)
|
[29] |
QIU Z, ZHANG C, WANG B, et al. Analysis of the accuracy of using ERA5 reanalysis data for diagnosis of evaporation ducts in the East China Sea[J]. Front Mar Sci, 2023, 9(1108600.
|
[30] |
MARTINEIRA M. A PASSIVE REFLECTOMETRY AND INTERFEROMETRY SYSTEM (PARIS)-APPLICATION TO OCEAN ALTIMETRY[J]. Esa Journal-European Space Agency, 1993, 17(4):331-55.
|
[31] |
GARRISON J L, KATZBERG S J. The Application of Reflected GPS Signals to Ocean Remote Sensing[J]. Remote Sensing of Environment, 2000, 73(2): 175-87.
|
[32] |
ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2):951-64.
|
[33] |
TORRES O, KATZBERG S J. Analysis of reflected global positioning system (GPS) signals from land for soil moisture determination and topography mapping; proceedings of the Earth Observing Systems VII, July 7, 2002-July 10, 2002, Seattle, WA, United states, F, 2002[C]. SPIE.
|
[34] |
JIA Yan,JIN Shuanggen,XIAO Zhiyu,et al.Soil Moisture Remote Sensing Using Global Navigation Satellite System-Reflectometry:Current Status and Opportunity[J].Geomatics and Information Science of Wuhan University,2023,48(11):1784-1799.DOI:10.13203/j.whugis20230253(贾燕,金双根,肖智宇,等.全球 导航卫星系统反射测量土壤水分遥感:现状与机遇[J].武汉大学学报(信息科学版),2023,48(11):1784-1799.DOI:10.13203/j.whugis20230253)
|
[35] |
ZHANG Shuangcheng,GUO Qinyu,MA Zhongmin,et al.Research Advances and Some Thoughts on Soil Moisture Retrieval by Space-Borne GNSSR[J].Geomatics and Information Science of Wuhan University,2024,49(1):15-26.DOI:10.13203/j.whugis20230100(张双成,郭沁雨,马中民,等.星载GNSS‐R反 演土壤湿度研究进展与思考[J].武汉大学学报(信息科学版),2024,49(1):15-26.DOI:10.13203/j.whugis20230100)
|
[36] |
ZHU Yongchao, ZOU Jingui, YU Kegen. A New Sea Ice Distribution Detection Method Using GNSS Reflected Signals[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1472-1477. DOI:10.13203/j.whugis20160539(朱勇超,邹进贵,余科根.一种使用卫星反射信号探测海冰分布新方法[J]. 武汉大学学报(信息科学版), 2018, 43(10):1472-1477. DOI:10.13203/j.whugis20160539)
|
[37] |
ZHANG Guodong, GUO Jian, YANG Dongkai, WANG Feng, GAO Hongxing. Sea Ice Edge Detection Using Spaceborne GNSS-R Signal[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5):668-674. DOI:10.13203/j.whugis20170050(张国栋,郭健,杨东凯,王峰,高洪兴.星载GNSS-R海冰 边界探测方法[J].武汉大学学报(信息科学版), 2019, 44(5):668-674. DOI:10.13203/j.whugis20170050)
|
[38] |
DENG Pan, WANG Zemin, AN Jiachun, ZHANG Xin, YU Qiuze, SUN Wei. An Improved Algorithm Based on Wavelet Decomposition to Retrieve Snow Depth Using GNSS-R Signals[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6):863-870. DOI:10.13203/j.whugis20190181(邓攀,王泽民, 安家春,张辛,于秋则,孙伟.利用小波分解的GNSS-R雪厚反演改进算法[J].武汉大学学报(信息科学版), 2021, 46(6):863-870. DOI: 10.13203/j.whugis20190181)
|
[39] |
WANG Dongwei, SUN Yueqiang, WANG Xianyi, BAI Weihua, XIA Junming, DU Qifei, CAI Yuerong, MENG Xiangguang, WU Chunjun, LIU Cheng, QIAO Hao, LI Fu. Water Surface Altimetry Using BD-3 B2a Reflected Signal[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11):1878-1886. DOI:10.13203/j.whugis20200278(王冬伟,孙越强,王先毅,白伟华,夏俊明,杜起飞,蔡跃荣,孟祥广,吴春俊,刘成,乔颢,李福.使用BD-3 B2a反射信 号测量水面高度[J].武汉大学学报(信息科学版), 2022, 47(11):1878-1886. DOI:10.13203/j.whugis20200278)
|
[40] |
DENG Ken, ZHOU Peiyuan, DU Lan, CAI Wei. GNSS-R Altimetry Method with Multi-system Single-Frequency Tight Integration[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1):146-155. DOI:10.13203/j.whugis20220785(邓垦,周佩元,杜兰,蔡巍.多系统单频紧组合GNSS-R测 高方法[J].武汉大学学报(信息科学版), 2024, 49(1):146-155. DOI:10.13203/j.whugis20220785)
|
[41] |
LOWRY A R, ROCKEN C, SOKOLOVSKIY S V, et al. Vertical profiling of atmospheric refractivity from ground-based GPS[J]. Radio Sci, 2002, 37(3):1- 21.
|
[42] |
WANG Bo. Method and Experiment of Atmospheric Ducts Estimation using Radar Clutter and GNSS[D].Xian:Xidian University, 2011.(王波.基于雷达杂 波和GNSS的大气波导反演方法与实验[D].西安:西安电子科技大学,2011.)
|
[43] |
ZHANG J, WU Z, WANG B, et al. Modeling low elevation GPS signal propagation in maritime atmospheric ducts[J]. J Atmos Sol-Terr Phys, 2012, 80(12- 20.
|
[44] |
ZHANG Jinpeng. Methods of Retrieving Tropospheric Ducts above Ocean Surface Using Radar Sea Clutter and GPS Signals[D].Xian:Xidian University, 2013.(张金鹏.海上对流层波导的雷达海杂波/GPS信号反演方法研究[D].西安:西安电子科技大学,2013.)
|
[45] |
QI Y Q, ZHANG B, YANG D K, et al. Modeling and simulation of airborne GNSS ocean reflection signal[J]. Journal of BeijingUniversity of Aeronautics and Astronautics, 2017, 43(3):567-572(in Chinese).(祁永强,张波,杨东凯,等.机载GNSS海洋反射信号的建模与仿真[J].北京航空航天大学学报,2017,43(03):567- 572.)
|
[46] |
LI B, ZHANG B, YU Y, et al. A Random Model and Simulation for Generating GNSS Ocean Reflected Signals[J]. IEEE Geosci Remote Sens Lett, 2019, 16(7):1036-40.
|
[47] |
Liu L J, Xia J M, Bai W H, et al. Influence of evaporation duct on the effective scattering region of GNSS reflected signals on the sea surface[J]. Chinese J. Geophys.(in Chinese), 2019, 62(02):499-507, doi:10.6038/cjg2019L0689.(刘黎军,夏俊明,白伟华等.蒸发波导对GNSS海面反射信号有效散射区域的影响 [J].地球物理学报, 2019, 62(02):499-507, doi:10.6038/cjg2019L0689.)
|
[48] |
LIU X, CAO Y, WU Z, et al. Inversion for Inhomogeneous Surface Duct without a Base Layer Based on Ocean-Scattered Low-Elevation BDS Signals[J]. Remote Sens, 2021, 13(19):3914.
|
[49] |
ZHANG Y. Electromagnetic Wave Propagation in Space[M]. Xian:Xidian University Press,2007:104-106.(张瑜.电磁波空间传播[M].西安:西安电子 科技大学出版社,2007:104-106.)
|
[50] |
The European Centre for Medium-Range Weather Forecasts. ERA5 hourly data on single levels from 1940 to present[DS/OL].[2024-08-30] https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download.
|
[51] |
YANG N, SONG D, SU D, et al. The Influence of Sea Surface Temperature From ECMWF Reanalysis Data on the Nonuniformity of Evaporation Duct[J]. IEEE Geosci Remote Sens Lett, 2024, 21(1-5).
|
[52] |
Bai W, Xia J, Zhao D,et al.GREEPS:An GNSS-R End-to-End Performance Simulator[J].IEEE, 2016.DOI: 10.1109/IGARSS.2016.7730260.
|
[1] | HUANG Bohua, YANG Bohang, LI Minggui, GUO Zhongkai, MAO Jianyou, WANG Hong. An Improved Method for MAD Gross Error Detection of Clock Error[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 747-752. DOI: 10.13203/j.whugis20190430 |
[2] | WANG Leyang, GU Wangwang, ZHAO Xiong, XU Guangyu, GAO Hua. Determination of Relative Weight Ratio of Joint Inversion Using Bias-Corrected Variance Component Estimation Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 508-516. DOI: 10.13203/j.whugis20200216 |
[3] | IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287 |
[4] | ZHAO Jianhu, WU Jingwen, ZHAO Xinglei, ZHOU Fengnian. A Correction Model for Depth Bias in Airborne LiDAR Bathymetry Systems[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 328-333. DOI: 10.13203/j.whugis20160481 |
[5] | LU Tieding, YANG Yuanxi, ZHOU Shijian. Comparative Analysis of MDB for Different Outliers Detection Methods[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 185-192, 199. DOI: 10.13203/j.whugis20140330 |
[6] | LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107 |
[7] | SUN Wenchuan, BAO Jingyang, JIN Shaohua, XIAO Fumin, ZHANG Zhiwei. A Re-calibration Method for Roll Bias of Multi-beam Sounding System[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1440-1444. DOI: 10.13203/j.whugis20140481 |
[8] | ZOU Qin, LI Qingquan. Target-points MST for Pavement Crack Detection[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 71-75. |
[9] | HUANG Xianyuan, ZHAI Guojun, SUI Lifen, HUANG Motao. Application of Least Square Support Vector Machine to Detecting Outliers of Multi-beam Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1188-1191. |
[10] | XU Caijun, WANG Jianglin. Linear Minimum Mean Square Error Estimation for Wet Delay Correction in SAR Interferogram[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 757-760. |