IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
Citation: IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287

An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model

Funds: 

The National Natural Science Foundation of China 41874009

More Information
  • Author Bio:

    XIA Lei, postgraduate, specializes in the theory and method of GNSS data preprocessing. E-mail: xialei5634@163.com

  • Corresponding author:

    PAN Xiong, PhD, professor. E-mail: pxjlh@163.com

  • Received Date: July 17, 2020
  • Published Date: June 04, 2021
  •   Objectives  Carrier phase is the key to achieve high precision positioning, and its quality determines the reliability of positioning results. Due to the development and needs of society, the data acquisition environment is becoming more and more complex, and the real-time requirements are also constantly improving, which greatly increases the probability of cycle slip and increases the difficulty of cycle slip detection. However, some cycle slip detection algorithms commonly used at present have poor detection effect in such environments as active ionosphere, low elevation angle, occlusion, etc., which lead to false detection and missed detection.
      Methods  In order to solve these problems, firstly, an improved algorithm based on TurboEdit epoch difference model is proposed. The trend terms of ionospheric delay and multipath effect errors are extracted by adding sliding polynomial fitting method to the epoch difference of GF (Geometry-Free), and by choosing appropriate threshold, the detection ability of small cycle slips is enhanced. Then, to solve the problem that epoch difference model can not distinguish cycle slip and gross errors, Score test in statistical diagnosis is introduced and constructed. A cycle slip and gross errors separation model based on Score test is built to avoid the phenomenon of cycle slip detection caused by gross errors. Finally, the improved GF epoch difference model is combined with Melbourne Wübbena(MW) combination to repair cycle slip, and the minimum one norm criterion of detection is used to select the correct repair value of cycle slip. The algorithm is verified by using the GPS un-differenced data of IGS (International GNSS Service) stations.
      Results  The cycle slips obtained by the improved GF epoch difference still have high detection sensitivity for small cycle slips. The simulated small cycle slip, continuous cycle slip and special cycle slip are detected, such as (1, 1), (-1, -1), (5, 4), etc. Two successive abnormal epochs detected by GF epoch difference optimization algorithm have successfully separated the simulated (1, 1), (0, 0.5) small gross errors after a Score test and deviation test.When GF and MW probes are used to calculate cycle slip directly, there are errors in cycle slip calculation due to the excessive noise of MW probe, and the calculation error reaches 3 weeks. By using the improved minimum one norm of GF epoch differential survey and MW survey, the correct cycle slip solution is found successfully.
      Conclusions  In the aspect of cycle slip detection, the improved GF epoch difference method can weaken the influence of ionospheric delay variation and multipath effect, and improve the accuracy of cycle slip detection. At the same time, through the appropriate threshold selection, even in the case of high ionospheric scintillation, small cycle slip and continuous cycle slip can be detected accurately. In the separation of cycle slip and gross errors, the fitting residual is replaced by the prediction residual to improve the Score test, which makes it suitable for anomaly test in real-time situation. Based on this, the separation model of cycle slip and gross errors can separate the gross errors from cycle slip accurately, avoid the misjudgment of cycle slip, and improve the reliability of real-time TurboEdit cycle slip detection method. In the aspect of cycle slip repair, the criterion of cycle slip repair success is to minimize the one norm of the probe change caused by correct cycle slip repair. Compared with solving cycle slip solution directly and rounding, this proposed algorithm can not only verify the correctness of cycle slip solution, but also correct the wrong cycle slip solution in real-time, get the accurate cycle slip value, and repair the subsequent observation value of epoch.
  • [1]
    叶世榕. GPS非差相位精密单点定位理论与实现[D]. 武汉: 武汉大学, 2002

    Ye Shirong.Theory and Its Realization of GPS Precise Point Position Undifferenced Phase Observation[D].Wuhan: Wuhan University, 2002
    [2]
    Lichtenegger H, Hofmann-Wellenhof B. GPS-Data Preprocessing for Cycle-Slip Detection[M]// Global Positioning System: An Overview.New York: Springer, 1990
    [3]
    Kee C, Walter T, Enge P, et al. Quality Control Algorithms on WAAS Wide-Area Reference Stations[J]. Navigation, 1997, 44(1): 53-62 doi: 10.1002/j.2161-4296.1997.tb01939.x
    [4]
    Blewitt G.An Automatic Editing Algorithm for GPS Data[J]. Geophysical Research Letters, 1990, 17(3): 199-202 doi: 10.1029/GL017i003p00199
    [5]
    Liu Z. A New Automated Cycle Slip Detection and Repair Method for a Single Dual-Frequency GPS Receiver[J]. Journal of Geodesy, 2011, 85(3): 171-183 doi: 10.1007/s00190-010-0426-y
    [6]
    Cai C, Liu Z, Xia P, et al. Cycle Slip Detection and Repair for Undifferenced GPS Observations Under High Ionospheric Activity[J]. GPS Solutions, 2013, 17(2): 247-260 doi: 10.1007/s10291-012-0275-7
    [7]
    Ju B, Gu D, Chang X, et al. Enhanced Cycle Slip Detection Method for Dual-Frequency BeiDou GEO Carrier Phase Observations[J]. GPS Solutions, 2017, 21(3): 1 227-1 238 doi: 10.1007/s10291-017-0607-8
    [8]
    Zhang X H, Li X X.Instantaneous Re-Initialization in Real-Time Kinematic PPP with Cycle Slip Fixing[J]. GPS Solutions, 2012, 16(3): 315-327 doi: 10.1007/s10291-011-0233-9
    [9]
    张小红, 曾琪, 何俊, 等. 构建阈值模型改善TurboEdit实时周跳探测[J]. 武汉大学学报·信息科学版, 2017, 42(3): 285-292 doi: 10.13203/j.whugis20150045

    Zhang Xiaohong, Zeng Qi, He Jun, et al. Improving TurboEdit Real-Time Cycle Slip Detection by the Construction of Threshold Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 285-292 doi: 10.13203/j.whugis20150045
    [10]
    Banville S, Langley R B. Mitigating the Impact of Ionospheric Cycle Slips in GNSS Observations[J]. Journal of Geodesy, 2013, 87(2): 179-193 doi: 10.1007/s00190-012-0604-1
    [11]
    Baarda W. A Testing Procedure for Use in Geodetic Networks[M]. Delft: Netherlands Geodetic Commission, 1968
    [12]
    黄令勇, 翟国君, 欧阳永忠, 等. 三频GNSS电离层周跳处理[J]. 测绘学报, 2015, 44(7): 717-725 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201507003.htm

    Huang Lingyong, Zhai Guojun, Ouyang Yongzhong, et al. Ionospheric Cycle Slip Processing in Triple-Frequency GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7): 717-725 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201507003.htm
    [13]
    潘雄, 吕玉婷, 汪耀, 等. 基于半参数平差模型的粗差定位与定值研究[J]. 武汉大学学报·信息科学版, 2016, 41(11): 1 421-1 426 doi: 10.13203/j.whugis20140493

    Pan Xiong, Lü Yuting, Wang Yao, et al. Research of the Location and Valuation of Gross Error Based on Semi-parametric Adjustment Model[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1 421-1 426 doi: 10.13203/j.whugis20140493
    [14]
    Boos D. On Generalized Score Tests[J]. American Statistician, 1992, 46(4): 327-333 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9605216176&site=ehost-live
    [15]
    Weisberg C S. Diagnostics for Heteroscedasticity in Regression[J]. Biometrika, 1983, 70(1): 1-10 doi: 10.1093/biomet/70.1.1
    [16]
    韦博成, 林金官, 解锋昌. 统计诊断[M]. 北京: 高等教育出版社, 2009

    Wei Bocheng, Lin Jinguan, Xie Fengchang. Statistical Diagnosis[M]. Beijing: Higher Education Press, 2009
    [17]
    Lacy M C D. Real-Time Cycle Slip Detection in Triple-Frequency GNSS[J]. GPS Solutions, 2012, 16(3): 353-362 doi: 10.1007/s10291-011-0237-5
  • Related Articles

    [1]ZHANG Kaishi, JIAO Wenhai, LI Jianwen. Analysis of GNSS Positioning Precision on Android Smart Devices[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1472-1477. DOI: 10.13203/j.whugis20180085
    [2]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [3]KONG Yao, SUN Baoqi, YANG Xuhai, CAO Fen, HE Zhanke, YANG Haiyan. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837. DOI: 10.13203/j.whugis20140856
    [4]ZHANG Xiaohong, DING Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 832-836.
    [5]ZHANG Xiaohong, GUO Fei, LI Pan, ZUO Xiang. Real-time Quality Control Procedure for GNSS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 940-944.
    [6]CAI Changsheng, ZHU Jianjun, DAI Wujiao, KUANG Cuilin. Modeling and Result Analysis of Combined GPS/GLONASS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1474-1477.
    [7]HE Ning, WANG Lei. Recursion Multi-service Cross-layer Flow Control Algorithm of Broadband GEO Satellite Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 532-536.
    [8]CAI Hua, ZHAO Qile, LOU Yidong. Implementation and Precision Analysis of GPS Precise Clock Estimation System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1293-1296.
    [9]DAI Wujiao, DING Xiaoli, ZHU Jianjun. Comparing GPS Stochastic Models Based on Observation Quality Indices[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 718-722.
    [10]ZHANG Yongjun, ZHANG Yong. Analysis of Precision of Relative Orientation and Forward Intersection with High-overlap Images[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2): 126-130.
  • Cited by

    Periodical cited type(28)

    1. 李岚,朱锋,刘万科,张小红. 城市分类场景的GNSS伪距随机模型构建及其定位性能分析. 武汉大学学报(信息科学版). 2025(03): 545-553 .
    2. 苑晓峥,徐爱功,高猛,祝会忠. 基于低成本终端抗差速度约束差分定位算法. 大地测量与地球动力学. 2024(01): 27-34 .
    3. 曲利红,李俊芹. 通用智能技术路线下的人机传播应用. 电视技术. 2024(03): 176-179 .
    4. 刘一,刘敏,边少锋,翟国君,周威. 北斗低成本接收机单频PPP海上定位性能分析. 海洋测绘. 2024(03): 68-72+82 .
    5. 张宝,吴泓正,邸越超,张传定. Android智能手机GNSS定位研究进展. 测绘科学. 2024(05): 1-14 .
    6. 侯雪,张献志,叶远斌. 基于GDCORS的北斗终端高精度定位算法实现及性能分析. 地理空间信息. 2024(08): 72-75 .
    7. 孙俊锋,穆宏波,于先文,廖鹏,吴焱泽. 顾及系统误差影响的智能手机GNSS观测值质量分析. 测绘工程. 2024(05): 43-49 .
    8. 孙俊锋,吴焱泽,于先文,廖鹏,叶嘉宁,曹嘉瑞. 基于北斗的智能手机内河航道高精度定位软件研发. 现代测绘. 2024(03): 13-17 .
    9. 尹昊华,雷博,连宏亮,徐邦岁,曾翔强. 基于安卓智能手机的高精度定位系统研发及测试. 国土资源导刊. 2024(03): 9-17 .
    10. 祝会忠,孙沐凡,李军. GNSS低成本智能终端抗差自适应差分定位算法. 导航定位学报. 2024(06): 10-19 .
    11. 王瑞光,王中元,胡超,王阳阳,刘冰雨. 智能手机BDS-3/GPS数据质量及SPP性能分析. 大地测量与地球动力学. 2023(02): 168-172 .
    12. 孟庆庆,郭德普,胡洁,薄伟伟. 移动GIS在黄委直管河道确权划界中的应用. 水利信息化. 2023(02): 44-49 .
    13. 徐彦田,刘巍峰,李玉星,姜鼎璇. BDS/GPS/GAL智能手机RTK动态定位算法. 无线电工程. 2023(05): 1061-1067 .
    14. 王甫红,栾梦杰,程雨欣,祝浩祈,赵广越,张万威. 城市环境下智能手机车载GNSS/MEMS IMU紧组合定位算法. 武汉大学学报(信息科学版). 2023(07): 1106-1116 .
    15. 郑东,汪梦月,杨中皇. SM3国密算法在Android内核的汇编语言快速实现. 西安邮电大学学报. 2023(03): 57-62 .
    16. 逯遥,聂志喜,王振杰,徐晓飞,张远帆,王翔. 单/双频混合数据的Android手机精密单点定位方法. 测绘科学. 2023(08): 64-71+129 .
    17. 傅鑫榕,王甫红,郭磊,栾梦杰,祝浩祈. 不同电离层模型对智能手机实时PPP精度的影响分析. 测绘地理信息. 2023(06): 26-31 .
    18. 葛在宸,王明华. 基于智能手机GNSS伪距定位的运动距离和速度确定. 江西科学. 2023(06): 1124-1130 .
    19. 邱树素,顾桢,章怿钦,叶俊华. 基于手机内置传感器的相对高程模型. 北京测绘. 2023(12): 1676-1682 .
    20. 董少敏,辛宪会,刘杰,陈文哲,卢为选. 便携式GNSS接收机集成方案及其定位精度分析. 海洋测绘. 2022(03): 56-60 .
    21. 甘露,王志斌,张少波,韩明敏,陈攀,黄威翰. Android智能手机间相对定位性能分析. 测绘工程. 2022(05): 54-60 .
    22. 李阿红. 基于混合神经网络的Android软件缺陷精准预测研究. 自动化与仪器仪表. 2022(08): 33-36+41 .
    23. 张小红,陶贤露,王颖喆,刘万科,朱锋. 城市场景智能手机GNSS/MEMS融合车载高精度定位. 武汉大学学报(信息科学版). 2022(10): 1740-1749 .
    24. 王怡欣,刘晖,钱闯,范潇云. 一种基于智能手机的实时高精度定位系统开发与车载应用测试. 测绘通报. 2022(10): 56-61 .
    25. 曾树林,匡翠林. 智能手机RTK定位软件实现及应用试验. 全球定位系统. 2022(05): 72-80 .
    26. 祝会忠,李骏鹏,李军. 智能手机GNSS多系统多频实时动态定位方法. 测绘科学. 2022(09): 8-19 .
    27. 舒宝,义琛,王利,许豪,田云青. 华为P30手机GPS/BDS/GLONASS/Galileo观测值随机模型优化及定位性能分析. 大地测量与地球动力学. 2022(12): 1222-1226 .
    28. 吴文坛,秘金钟,谷守周. 智能手机广域差分实时定位分析. 测绘科学. 2022(10): 39-44 .

    Other cited types(27)

Catalog

    Article views PDF downloads Cited by(55)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return