ZOU Qin, LI Qingquan. Target-points MST for Pavement Crack Detection[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 71-75.
Citation: ZOU Qin, LI Qingquan. Target-points MST for Pavement Crack Detection[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 71-75.

Target-points MST for Pavement Crack Detection

Funds: 国家自然科学基金资助项目(40830530),国家创新团队基金资助项目(40721001),国家教育部博士点基金资助项目(20070486001),中央高校基本科研业务费专项资助项目(20102130101000130,6082031)
More Information
  • Received Date: October 19, 2010
  • Published Date: January 04, 2011
  • From analysis of the imaging characteristics of pavement cracks,a crack detection method based on target-points minimum spanning tree(TMST) is proposed.The minimum spanning tree has the advantage of description of spatial clustering linear feature,which facilitates the global analysis of cracks.The results from empirical experiments indicate that,to detect discrete cracks,the proposed method outperforms the traditional methods.
  • Related Articles

    [1]LIU Junnan, LIU Haiyan, CHEN Xiaohui, GUO Xuan, GUO Wenyue, ZHU Xinming, ZHAO Qingbo, LI Jia. Terrorism Event Model by Knowledge Graph[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 313-322. DOI: 10.13203/j.whugis20190428
    [2]LU Wei, AI Tinghua. Center Point Extraction of Simple Area Object Using Triangulation Skeleton Graph[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 337-343. DOI: 10.13203/j.whugis20180236
    [3]YUAN Xiuxiao, YUAN Wei, CHEN Shiyu. An Automatic Detection Method of Mismatching Points in Remote Sensing Images Based on Graph Theory[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1854-1860. DOI: 10.13203/j.whugis20180154
    [4]WANG Ping, WEI Zheng, CUI Weihong, LIN Zhiyong. A Image Segmentation Method Based on Statistics Learning Theory and Minimum Spanning Tree[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 877-883. DOI: 10.13203/j.whugis20150345
    [5]TIAN Jing, SONG Zihan, AI Tinghua. Grid Pattern Extraction in Road Networks with Graph[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 724-727.
    [6]DENG Min, LIU Qiliang, LI Guangqiang, XIAO Qi. A Spatial Clustering Algorithm Based on Minimum Spanning Tree-like[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1360-1364.
    [7]WAN Youchuan, HUANG Jun. Influence of Geometric and Graph Theoretical Measures on Land Classification Using High-Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 794-798.
    [8]XIA Lanfang, HU Peng, HUANG Menglong. Zero Initialization of Spatial Data and Minimum Spanning Tree Algorithm in Presence of Arbitrary Obstacles[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 60-63.
    [9]ZHANG Yuanyu, LI Lin, JIN Yuping, ZHU Haihong. Structured Design of Dendritic River Networks Based on Graph[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 537-539,543.
    [10]Lin Zongjian, Fu Zhongliang. Automatic Separation of Graph/Symbol in Topographic Map[J]. Geomatics and Information Science of Wuhan University, 1994, 19(4): 328-331.

Catalog

    Article views (1204) PDF downloads (838) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return