YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120
Citation: YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120

Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites

More Information
  • Received Date: September 20, 2024
  • Objectives: Surface Water and Ocean Topography (SWOT) mission, a wide-swath altimeter satellite, measures sea surface heights (SSHs) with unparalleled spatial resolution and precision, offering new opportunities to enhance the precision and resolution of the existing marine gravity fields. However, there is currently limited research on recovering marine gravity fields from SWOT, particularly with respect to quantitative assessments of the accuracy of SWOT-derived marine gravity field. This study investigates the potential of SWOT in determining deflection of the vertical (DOV) and deriving marine gravity anomalies based on simulated SWOT data. Methods: In the northern South China Sea around Dongsha Island, we generate the high-wavenumber SSH components using multi-beam depths based on the residual depth model principle, compensating for the losing high-frequency signals of the DTU21MSS model. Then we simulate wide-swath SWOT SSH observations with 1.4cm precision and 2 km×2 km spatial resolution. In order to explore the advantages of SWOT in recovering marine gravity field over the conventional nadir-looking altimeter satellites, we also simulate SSH data for Jason-2 and Cryosat-2. To make the most of SWOT’s wide-swath altimetry nature, we separate two-dimensional SSHs into along- and cross-track directions. We use least-squares collocation (LSC) and weighted least-squares adjustment (WLSA) to estimate the north and east components of DOV and derive marine gravity anomalies using inverse Vening-Meinesz formula. The “true values” of DOV components and gravity anomalies are computed within the simulation of SWOT data to evaluate the precision of the results. Results: The LSC method outperforms WLSA in estimating the DOV components. Averaging multi-cycle SWOT data efficiently suppresses observation errors. SWOT along-track data are beneficial for estimating the north components of DOV, while the cross-track data are useful for resolving the east components. In the study area, the precision of both the north and east components of DOV estimated from the merged Jason-2 and Cryosat-2 data is about 3 microrad, thereby deriving 1′×1′ gravity anomalies with 4.7-mgal precision. Using SWOT data, the precisions of the two DOV components and gravity anomalies improve to 0.7 microrad and 1 mgal, respectively. Conclusions: Compared to conventional altimeters, the SWOT wide-swath altimetry significantly improves the accuracy of marine DOV and gravity fields.
  • [1]
    GUO J, LUO H, ZHU C, et al. Accuracy comparison of marine gravity derived from HY-2A/GM and CryoSat-2 altimetry data: a case study in the Gulf of Mexico[J]. Geophysical Journal International, 2022, 230.2: 1267-1279.
    [2]
    FAN D, LI S, MENG S, et al. Bathymetric Prediction from Multi-source Satellite Altimetry Gravity Data[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 49-58.
    [3]
    YUAN J, GUO J, ZHU C, et al. High-resolution sea level change around China seas revealed through multi-satellite altimeter data[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102433.
    [4]
    WATTS A B, TOZER B, HARPER H, et al. Evaluation of shipboard and satellite-derived bathymetry and gravity data over seamounts in the northwest Pacific Ocean[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(10): 1–18.
    [5]
    YU D, HWANG C. Calibrating error variance and scaling global covariance function of geoid gradients for optimal determinations of gravity anomaly and gravity gradient from altimetry[J]. Journal of Geodesy, 2022, 96(9): 1–21.
    [6]
    ZHANG S, SANDWELL D T, JIN T, et al. Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections[J]. Journal of Applied Geophysics, 2017, 137: 128–137.
    [7]
    ZHU C, GUO J, GAO J, et al. Marine gravity determined from multi-satellite GM/ERM altimeter data over the South China Sea: SCSGA V1.0[J]. Journal of Geodesy, 2020, 94(5):1-16.
    [8]
    ZHANG Shengjun, LI Jiancheng, KONG Xiangxue. Inversion of global marine gravity anomalies with vertical deflection method deduced from Laplace equation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 452–460.(张胜军,李建成,孔祥雪. 基于Laplace方程的垂线偏差法反演全球海域重力异常[J]. 测绘学报, 2020, 49(4): 452–460.)
    [9]
    PERAL E, ESTEBAN-FERNANDEZ D. SWOT mission performance and error budget[C]// IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018: 8625–8628.
    [10]
    XU Yongsheng, GAO Le, ZHANG Yunhua. New generation altimetry satellite SWOT and its reference to China’s swath altimetrysatellite[J]. Remote Sensing Technology and Application, 2017, 32(1): 84–94.(徐永生,高乐,张云华. 美国新一代测高卫星SWOT——评述我国宽刈幅干涉卫星的发展借鉴[J]. 遥感技术与应用, 2017, 32(1): 84–94.)
    [11]
    YU D, HWANG C, ANDERSEN O B, et al. Gravity recovery from SWOT altimetry using geoid height and geoid gradient[J]. Remote Sensing of Environment, 2021, 265: 112650.
    [12]
    JIN T, ZHOU M, ZHANG H, et al. Analysis of vertical deflections determined from one cycle of simulated SWOT wide-swath altimeter data[J]. Journal of Geodesy, 2022, 96(4): 1–13.
    [13]
    ANDERSEN O B, ROSE S K, ABULAITIJIANG A, et al. The DTU21 Global Mean Sea Surface and First Evaluation[J]. Earth System Science Data, 2023: 1–19.
    [14]
    HSIAO Y S, HWANG C, CHENG Y S, et al. High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery[J]. Remote Sensing of Environment, 2016, 176: 69–83.
    [15]
    MULET S, RIO M H, ETIENNE H, et al. The new CNES-CLS18 global mean dynamic topography[J]. Ocean Science, 2021, 17(3): 789–808.
    [16]
    PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the Earth Gravitational Model 2008(EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4).
    [17]
    HWANG C, PARSONS B. Gravity anomalies derived from Seasat, Geosat, ERS‐ 1 and TOPEX/POSEIDON altimetry and ship gravity: a case study over the Reykjanes Ridge[J]. Geophysical Journal International, 1995, 122(2): 551–568.
    [18]
    SANDWELL D T. Antarctic marine gravity field from high‐ density satellite altimetry[J]. Geophysical Journal International, 1992, 109(2): 437–448.
    [19]
    HWANG C, KAO E C, PARSONS B. Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data[J]. Geophysical Journal International, 1998, 134(2): 449–459.
    [20]
    WANG Hubiao, WANG Yong, CHAI Hua, et al. 1'×1' vertical deflection and its precision evaluation on China West Pacific Ocean region[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1073–1079.(王虎彪,王勇,柴华, 等. 中国西太平洋海域1'×1'垂线偏差模型及精度评估[J]. 测绘学报, 2017, 46(9): 1073–1079.)
    [21]
    WANG Hubiao, WANG Yong, LU Yang. High precision vertical deflection over China marginal sea and global sea derived from multi-satellite altimeter[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 770–773.(王虎彪,王勇,陆洋. 联合多种测高数据确定中国边缘海及全球海域的垂线偏差[J]. 武汉大学学报:信息科学版, 2007, 32(9): 770–773.)
    [22]
    HWANG C. Inverse Vening Meinesz formula and deflection-geoid formula: applications to the predictions of gravity and geoid over the South China Sea[J]. Journal of Geodesy, 1998, 72: 304-312.
    [23]
    SANDWELL D T, SMITH W H F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B5): 10039–10054.
    [24]
    LI Zhen, GUO Jinyun, SUN Zhongmiao, et al. Global marine gravity anomalies recovered from multi-beam laser altimeter data of ICESat-2[J]. Acta Geodaetica et Cartographica Sinica, 2023, 53(2): 252-262.(李真,郭金运, 孙中苗, 等. 基于ICESat-2多波束激光测高数据的全球海洋重力异常反演分析[J]. 测绘学报, 2023, 53(2): 252-262.)
    [25]
    ZHU C, GUO J, YUAN J, et al. SDUST2021GRA: Global marine gravity anomaly model recovered from Ka-band and Ku-band satellite altimeter data[J]. Earth System Science Data, 2022, 14.10: 4589-4606.
    [26]
    ZHANG Feifei, WANG Hao, ZHANG Yimi, et al. Accuracy analysis of satellite altimetry gravity data in the Western Pacific Area[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220429(张菲菲, 王皓, 张义蜜, 等. 西太平洋海域卫星测高重力数据精度分析[J]. 武汉大学学报(信息科学版). DOI: 10.13203/j.whugis20220429)
  • Related Articles

    [1]SU Yong, LI Jiancheng, XU Xinyu, WANG Changqing, YU Biao, LI Qiong, GU Yanchao. Progress in Point-Mass Modeling Approach for Surface Mass Distribution Derived from Gravity Satellite Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1503-1516. DOI: 10.13203/j.whugis20230294
    [2]GONG Zhiqiang, TANG Wei, JIANG Jinbao, LI Hui, ZHANG Xin, GENG Xu, WEI Xing. Monitoring and Modeling of Land Subsidence in Liaohe Delta Oilfield Based on Time Series InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1422-1433. DOI: 10.13203/j.whugis20220162
    [3]LI Jiancheng, LI Xianpao, ZHONG Bo. Review of Inverting GNSS Surface Deformations for Regional Terrestrial Water Storage Changes[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1724-1735. DOI: 10.13203/j.whugis20230363
    [4]LI Xianpao, ZHONG Bo, LIU Tao. Simulation Analysis of Inverting Regional Surface Mass Variations Using GNSS Vertical Displacement[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 45-54. DOI: 10.13203/j.whugis20190257
    [5]XIE Ping, ZHANG Shuangxi, ZHOU Lü, LI Qinglong, XIAO Jiahao, CAI Jianfeng. Detection of the Urban Surface Deformation and New Strategy for Flood Prevention in Wuhan Central District[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1015-1024. DOI: 10.13203/j.whugis20190439
    [6]WANG Hansheng, XIANG Longwei, WU Patrick, STEFFEN Holger, JIA Lulu. Degree One and Degree Two Contributions to Global Surface Mass Anomaly Derived from Different Models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2147-2156, 2242. DOI: 10.13203/j.whugis20180244
    [7]SHEN Yingchun, YAN Haoming, PENG Peng, BAI Xixuan, TIAN Daiheng. Comparative Study of Green's Function and Spherical Harmonic Function Methods on Surface Deformation Caused by Mass Loading[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 1008-1014. DOI: 10.13203/j.whugis20150201
    [8]LUO Sanming, DU Kaifu, WAN Wenni, FU Liming, LI Yongkun, LIANG Fuxun. Ground Subsidence Rate Inversion of Large Temporal and SpatialScales Based on Extended PSInSAR Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1128-1134. DOI: 10.13203/j.whugis20130670
    [9]SHU Chanfang, LI Fei, HAO Weifeng. Geoid/Quasigeoid Fitting Based on Equivalent Point Masses[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 231-234.
    [10]Guan Zelin, Li Yecai. The Study of Ocean Loading Tide[J]. Geomatics and Information Science of Wuhan University, 1992, 17(1): 10-20.

Catalog

    Article views (183) PDF downloads (46) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return