Citation: | YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120 |
[1] |
GUO J, LUO H, ZHU C, et al. Accuracy comparison of marine gravity derived from HY-2A/GM and CryoSat-2 altimetry data: a case study in the Gulf of Mexico[J]. Geophysical Journal International, 2022, 230.2: 1267-1279.
|
[2] |
FAN D, LI S, MENG S, et al. Bathymetric Prediction from Multi-source Satellite Altimetry Gravity Data[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 49-58.
|
[3] |
YUAN J, GUO J, ZHU C, et al. High-resolution sea level change around China seas revealed through multi-satellite altimeter data[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102433.
|
[4] |
WATTS A B, TOZER B, HARPER H, et al. Evaluation of shipboard and satellite-derived bathymetry and gravity data over seamounts in the northwest Pacific Ocean[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(10): 1–18.
|
[5] |
YU D, HWANG C. Calibrating error variance and scaling global covariance function of geoid gradients for optimal determinations of gravity anomaly and gravity gradient from altimetry[J]. Journal of Geodesy, 2022, 96(9): 1–21.
|
[6] |
ZHANG S, SANDWELL D T, JIN T, et al. Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections[J]. Journal of Applied Geophysics, 2017, 137: 128–137.
|
[7] |
ZHU C, GUO J, GAO J, et al. Marine gravity determined from multi-satellite GM/ERM altimeter data over the South China Sea: SCSGA V1.0[J]. Journal of Geodesy, 2020, 94(5):1-16.
|
[8] |
ZHANG Shengjun, LI Jiancheng, KONG Xiangxue. Inversion of global marine gravity anomalies with vertical deflection method deduced from Laplace equation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 452–460.(张胜军,李建成,孔祥雪. 基于Laplace方程的垂线偏差法反演全球海域重力异常[J]. 测绘学报, 2020, 49(4): 452–460.)
|
[9] |
PERAL E, ESTEBAN-FERNANDEZ D. SWOT mission performance and error budget[C]// IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018: 8625–8628.
|
[10] |
XU Yongsheng, GAO Le, ZHANG Yunhua. New generation altimetry satellite SWOT and its reference to China’s swath altimetrysatellite[J]. Remote Sensing Technology and Application, 2017, 32(1): 84–94.(徐永生,高乐,张云华. 美国新一代测高卫星SWOT——评述我国宽刈幅干涉卫星的发展借鉴[J]. 遥感技术与应用, 2017, 32(1): 84–94.)
|
[11] |
YU D, HWANG C, ANDERSEN O B, et al. Gravity recovery from SWOT altimetry using geoid height and geoid gradient[J]. Remote Sensing of Environment, 2021, 265: 112650.
|
[12] |
JIN T, ZHOU M, ZHANG H, et al. Analysis of vertical deflections determined from one cycle of simulated SWOT wide-swath altimeter data[J]. Journal of Geodesy, 2022, 96(4): 1–13.
|
[13] |
ANDERSEN O B, ROSE S K, ABULAITIJIANG A, et al. The DTU21 Global Mean Sea Surface and First Evaluation[J]. Earth System Science Data, 2023: 1–19.
|
[14] |
HSIAO Y S, HWANG C, CHENG Y S, et al. High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery[J]. Remote Sensing of Environment, 2016, 176: 69–83.
|
[15] |
MULET S, RIO M H, ETIENNE H, et al. The new CNES-CLS18 global mean dynamic topography[J]. Ocean Science, 2021, 17(3): 789–808.
|
[16] |
PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the Earth Gravitational Model 2008(EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4).
|
[17] |
HWANG C, PARSONS B. Gravity anomalies derived from Seasat, Geosat, ERS‐ 1 and TOPEX/POSEIDON altimetry and ship gravity: a case study over the Reykjanes Ridge[J]. Geophysical Journal International, 1995, 122(2): 551–568.
|
[18] |
SANDWELL D T. Antarctic marine gravity field from high‐ density satellite altimetry[J]. Geophysical Journal International, 1992, 109(2): 437–448.
|
[19] |
HWANG C, KAO E C, PARSONS B. Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data[J]. Geophysical Journal International, 1998, 134(2): 449–459.
|
[20] |
WANG Hubiao, WANG Yong, CHAI Hua, et al. 1'×1' vertical deflection and its precision evaluation on China West Pacific Ocean region[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1073–1079.(王虎彪,王勇,柴华, 等. 中国西太平洋海域1'×1'垂线偏差模型及精度评估[J]. 测绘学报, 2017, 46(9): 1073–1079.)
|
[21] |
WANG Hubiao, WANG Yong, LU Yang. High precision vertical deflection over China marginal sea and global sea derived from multi-satellite altimeter[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 770–773.(王虎彪,王勇,陆洋. 联合多种测高数据确定中国边缘海及全球海域的垂线偏差[J]. 武汉大学学报:信息科学版, 2007, 32(9): 770–773.)
|
[22] |
HWANG C. Inverse Vening Meinesz formula and deflection-geoid formula: applications to the predictions of gravity and geoid over the South China Sea[J]. Journal of Geodesy, 1998, 72: 304-312.
|
[23] |
SANDWELL D T, SMITH W H F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B5): 10039–10054.
|
[24] |
LI Zhen, GUO Jinyun, SUN Zhongmiao, et al. Global marine gravity anomalies recovered from multi-beam laser altimeter data of ICESat-2[J]. Acta Geodaetica et Cartographica Sinica, 2023, 53(2): 252-262.(李真,郭金运, 孙中苗, 等. 基于ICESat-2多波束激光测高数据的全球海洋重力异常反演分析[J]. 测绘学报, 2023, 53(2): 252-262.)
|
[25] |
ZHU C, GUO J, YUAN J, et al. SDUST2021GRA: Global marine gravity anomaly model recovered from Ka-band and Ku-band satellite altimeter data[J]. Earth System Science Data, 2022, 14.10: 4589-4606.
|
[26] |
ZHANG Feifei, WANG Hao, ZHANG Yimi, et al. Accuracy analysis of satellite altimetry gravity data in the Western Pacific Area[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220429(张菲菲, 王皓, 张义蜜, 等. 西太平洋海域卫星测高重力数据精度分析[J]. 武汉大学学报(信息科学版). DOI: 10.13203/j.whugis20220429)
|
[1] | SU Yong, LI Jiancheng, XU Xinyu, WANG Changqing, YU Biao, LI Qiong, GU Yanchao. Progress in Point-Mass Modeling Approach for Surface Mass Distribution Derived from Gravity Satellite Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1503-1516. DOI: 10.13203/j.whugis20230294 |
[2] | GONG Zhiqiang, TANG Wei, JIANG Jinbao, LI Hui, ZHANG Xin, GENG Xu, WEI Xing. Monitoring and Modeling of Land Subsidence in Liaohe Delta Oilfield Based on Time Series InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1422-1433. DOI: 10.13203/j.whugis20220162 |
[3] | LI Jiancheng, LI Xianpao, ZHONG Bo. Review of Inverting GNSS Surface Deformations for Regional Terrestrial Water Storage Changes[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1724-1735. DOI: 10.13203/j.whugis20230363 |
[4] | LI Xianpao, ZHONG Bo, LIU Tao. Simulation Analysis of Inverting Regional Surface Mass Variations Using GNSS Vertical Displacement[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 45-54. DOI: 10.13203/j.whugis20190257 |
[5] | XIE Ping, ZHANG Shuangxi, ZHOU Lü, LI Qinglong, XIAO Jiahao, CAI Jianfeng. Detection of the Urban Surface Deformation and New Strategy for Flood Prevention in Wuhan Central District[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1015-1024. DOI: 10.13203/j.whugis20190439 |
[6] | WANG Hansheng, XIANG Longwei, WU Patrick, STEFFEN Holger, JIA Lulu. Degree One and Degree Two Contributions to Global Surface Mass Anomaly Derived from Different Models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2147-2156, 2242. DOI: 10.13203/j.whugis20180244 |
[7] | SHEN Yingchun, YAN Haoming, PENG Peng, BAI Xixuan, TIAN Daiheng. Comparative Study of Green's Function and Spherical Harmonic Function Methods on Surface Deformation Caused by Mass Loading[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 1008-1014. DOI: 10.13203/j.whugis20150201 |
[8] | LUO Sanming, DU Kaifu, WAN Wenni, FU Liming, LI Yongkun, LIANG Fuxun. Ground Subsidence Rate Inversion of Large Temporal and SpatialScales Based on Extended PSInSAR Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1128-1134. DOI: 10.13203/j.whugis20130670 |
[9] | SHU Chanfang, LI Fei, HAO Weifeng. Geoid/Quasigeoid Fitting Based on Equivalent Point Masses[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 231-234. |
[10] | Guan Zelin, Li Yecai. The Study of Ocean Loading Tide[J]. Geomatics and Information Science of Wuhan University, 1992, 17(1): 10-20. |