Citation: | LI Jiancheng, LI Xianpao, ZHONG Bo. Review of Inverting GNSS Surface Deformations for Regional Terrestrial Water Storage Changes[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1724-1735. DOI: 10.13203/j.whugis20230363 |
Continuous and dense global navigation satellite system (GNSS) observations of surface deformation can be used to recover regional terrestrial water storage (TWS) changes with high spatiotemporal resolution, which is of great significance for the study of regional water cycle and climate changes and has become a hot topic in the field of hydro-geodesy. This paper introduces the basic theory and inversion algorithms of the loading Green's function method and Slepian basis function method, and the stability and performance of these two methods in retrieving regional TWS changes by using GNSS surface deformations are evaluated. Meanwhile, the latest progress in using GNSS-derived TWS changes to study regional water cycles and extreme climate changes is reviewed. The existing problems and future development trends of the inversion of GNSS observations (e.g. refined GNSS data processing and joint inversion of multisource data) are summarized and analyzed. It provides important insights into the use of GNSS observations to investigate regional TWS changes and related applications in hydro-geodesy.
[1] |
Rodell M, Famiglietti J S. Detectability of Variations in Continental Water Storage from Satellite Observations of the Time Dependent Gravity Field[J]. Water Resources Research, 1999, 35(9): 2705-2723. doi: 10.1029/1999WR900141
|
[2] |
Rodell M, Famiglietti J S, Wiese D N, et al. Emerging Trends in Global Freshwater Availability[J]. Nature, 2018, 557(7707): 651-659. doi: 10.1038/s41586-018-0123-1
|
[3] |
许厚泽, 陆洋, 钟敏, 等. 卫星重力测量及其在地球物理环境变化监测中的应用[J]. 中国科学: 地球科学, 2012, 42(6): 843-853. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201206006.htm
Xu Houze, Lu Yang, Zhong Min, et al. Satellite Gravimetry and Its Application in Monitoring the Change of Geophysical Environment[J]. Scientia Sinica (Terrae), 2012, 42(6): 843-853 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201206006.htm
|
[4] |
Long D, Scanlon B R, Longuevergne L, et al. GRACE Satellite Monitoring of Large Depletion in Water Storage in Response to the 2011 Drought in Texas[J]. Geophysical Research Letters, 2013, 40(13): 3395-3401. doi: 10.1002/grl.50655
|
[5] |
Tapley B D, Watkins M M, Flechtner F, et al. Contributions of GRACE to Understanding Climate Change[J]. Nature Climate Change, 2019, 9(5): 358-369. doi: 10.1038/s41558-019-0456-2
|
[6] |
姜卫平, 王锴华, 李昭, 等. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2112-2123. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201812041.htm
Jiang Weiping, Wang Kaihua, Li Zhao, et al. Prospect and Theory of GNSS Coordinate Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2112-2123 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201812041.htm
|
[7] |
Farrell W E. Deformation of the Earth by Surface Loads[J]. Reviews of Geophysics, 1972, 10(3): 761-797. doi: 10.1029/RG010i003p00761
|
[8] |
Blewitt G, Lavallée D, Clarke P, et al. A New Global Mode of Earth Deformation: Seasonal Cycle Detected[J]. Science, 2001, 294(5550): 2342-2345. doi: 10.1126/science.1065328
|
[9] |
Wu X P, Heflin M B, Ivins E R, et al. Large-Scale Global Surface Mass Variations Inferred from GPS Measurements of Load-Induced Deformation[J]. Geophysical Research Letters, 2003, 30(14): 1742.
|
[10] |
Argus D F, Fu Y N, Landerer F W. Seasonal Variation in Total Water Storage in California Inferred from GPS Observations of Vertical Land Motion[J]. Geophysical Research Letters, 2014, 41(6): 1971-1980. doi: 10.1002/2014GL059570
|
[11] |
Borsa A A, Agnew D C, Cayan D R. Ongoing Drought-Induced Uplift in the Western United States[J]. Science, 2014, 345(6204): 1587-1590. doi: 10.1126/science.1260279
|
[12] |
Rietbroek R, Fritsche M, Dahle C, et al. Can GPS-derived Surface Loading Bridge a GRACE Mission Gap?[J]. Surveys in Geophysics, 2014, 35(6): 1267-1283. doi: 10.1007/s10712-013-9276-5
|
[13] |
Zhang X G, Jin S G, Lu X C. Global Surface Mass Variations from Continuous GPS Observations and Satellite Altimetry Data[J]. Remote Sensing, 2017, 9(10): 1000. doi: 10.3390/rs9101000
|
[14] |
Bevis M. Seasonal Fluctuations in the Mass of the Amazon River System and Earth's Elastic Response[J]. Geophysical Research Letters, 2005, 32(16): L16308.
|
[15] |
Heki K. Seasonal Modulation of Interseismic Strain Buildup in Northeastern Japan Driven by Snow Loads[J]. Science, 2001, 293(5527): 89-92. doi: 10.1126/science.1061056
|
[16] |
White A M, Gardner W P, Borsa A A, et al. A Review of GNSS/GPS in Hydrogeodesy: Hydrologic Loading Applications and Their Implications for Water Resource Research[J]. Water Resources Research, 2022, 58(7): e2022WR032078. doi: 10.1029/2022WR032078
|
[17] |
Argus D F, Landerer F W, Wiese D N, et al. Sustained Water Loss in California's Mountain Ranges During Severe Drought from 2012 to 2015 Inferred from GPS[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10559-10585.
|
[18] |
Fu Y N, Argus D F, Landerer F W. GPS as an Independent Measurement to Estimate Terrestrial Water Storage Variations in Washington and Oregon[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(1): 552-566. doi: 10.1002/2014JB011415
|
[19] |
Jin S G, Zhang T Y. Terrestrial Water Storage Anomalies Associated with Drought in Southwestern USA from GPS Observations[J]. Surveys in Geophysics, 2016, 37(6): 1139-1156. doi: 10.1007/s10712-016-9385-z
|
[20] |
Enzminger T L, Small E E, Borsa A A. Accuracy of Snow Water Equivalent Estimated from GPS Vertical Displacements: A Synthetic Loading Case Study for Western U. S. Mountains[J]. Water Resources Research, 2018, 54(1): 581-599. doi: 10.1002/2017WR021521
|
[21] |
Enzminger T L, Small E E, Borsa A A. Subsurface Water Dominates Sierra Nevada Seasonal Hydrologic Storage[J]. Geophysical Research Letters, 2019, 46(21): 11993-12001. doi: 10.1029/2019GL084589
|
[22] |
Zhang B, Yao Y B, Fok H S, et al. Potential Seasonal Terrestrial Water Storage Monitoring from GPS Vertical Displacements: A Case Study in the Lower Three-Rivers Headwater Region, China[J]. Sensors, 2016, 16(9): 1526. doi: 10.3390/s16091526
|
[23] |
Hsu Y J, Fu Y N, Bürgmann R, et al. Assessing Seasonal and Interannual Water Storage Variations in Taiwan, China Using Geodetic and Hydrological Data[J]. Earth and Planetary Science Letters, 2020, 550: 116532. doi: 10.1016/j.epsl.2020.116532
|
[24] |
Zhong B, Li X P, Chen J L, et al. Surface Mass Variations from GPS and GRACE/GFO: A Case Study in Southwest China[J]. Remote Sensing, 2020, 12(11): 1835. doi: 10.3390/rs12111835
|
[25] |
Jiang Z S, Hsu Y J, Yuan L G, et al. Characterizing Spatiotemporal Patterns of Terrestrial Water Storage Variations Using GNSS Vertical Data in Sichuan, China[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(12): e2021JB022398. doi: 10.1029/2021JB022398
|
[26] |
Shen Y F, Zheng W, Yin W J, et al. Inverted Algorithm of Terrestrial Water-Storage Anomalies Based on Machine Learning Combined with Load Model and Its Application in Southwest China[J]. Remote Sensing, 2021, 13(17): 3358. doi: 10.3390/rs13173358
|
[27] |
Li X P, Zhong B, Li J C, et al. Analysis of Terrestrial Water Storage Changes in the Shaan-Gan-Ning Region Using GPS and GRACE/GFO[J]. Geodesy and Geodynamics, 2022, 13(2): 179-188. doi: 10.1016/j.geog.2021.11.001
|
[28] |
Ferreira V, Ndehedehe C, Montecino H, et al. Prospects for Imaging Terrestrial Water Storage in South America Using Daily GPS Observations[J]. Remote Sensing, 2019, 11(6): 679. doi: 10.3390/rs11060679
|
[29] |
Jiang Z S, Hsu Y J, Yuan L G, et al. Insights into Hydrological Drought Characteristics Using GNSS-Inferred Large-Scale Terrestrial Water Storage Deficits[J]. Earth and Planetary Science Letters, 2022, 578: 117294. doi: 10.1016/j.epsl.2021.117294
|
[30] |
Tang M, Yuan L G, Jiang Z S, et al. Characterization of Hydrological Droughts in Brazil Using a Novel Multiscale Index from GNSS[J]. Journal of Hydrology, 2023, 617: 128934. doi: 10.1016/j.jhydrol.2022.128934
|
[31] |
Wahr J, Khan S A, van Dam T, et al. The Use of GPS Horizontals for Loading Studies, with Applications to Northern California and Southeast Greenland[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(4): 1795-1806. doi: 10.1002/jgrb.50104
|
[32] |
Wang H S, Xiang L W, Jia L L, et al. Load Love Numbers and Green's Functions for Elastic Earth Models PREM, iasp91, ak135, and Modified Models with Refined Crustal Structure from Crust 2.0[J]. Computers & Geosciences, 2012, 49: 190-199.
|
[33] |
Tikhonov A N. On the Solution of Ill-Posed Problems and the Method of Regularization [J]. Russian Academy of Sciences, 1963, 151(3): 501‒504.
|
[34] |
Hansen P C. Analysis of Discrete Ill-Posed Problems by Means of the L-curve[J]. SIAM Review, 1992, 34(4): 561-580. doi: 10.1137/1034115
|
[35] |
Golub G H, Heath M, Wahba G. Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter[J]. Technometrics, 1979, 21(2): 215-223. doi: 10.1080/00401706.1979.10489751
|
[36] |
何思源, 谷延超, 范东明, 等. 利用GPS垂直位移反演云南省陆地水储量变化[J]. 测绘学报, 2018, 47(3): 332-340. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201803006.htm
He Siyuan, Gu Yanchao, Fan Dongming, et al. Seasonal Variation of Terrestrial Water Storage in Yunnan Province Inferred from GPS Vertical Observations[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3): 332-340 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201803006.htm
|
[37] |
Slepian D. Some Comments on Fourier Analysis, Uncertainty and Modeling [J]. SIAM Review, 2006, 25(3): 379-393.
|
[38] |
Simons F J, Dahlen F A. Spherical Slepian Functions and the Polar Gap in Geodesy[J]. Geophysical Journal International, 2006, 166(3): 1039-1061. doi: 10.1111/j.1365-246X.2006.03065.x
|
[39] |
Dahlen F A, Simons F J. Spectral Estimation on a Sphere in Geophysics and Cosmology[J]. Geophysical Journal International, 2008, 174(3): 774-807. doi: 10.1111/j.1365-246X.2008.03854.x
|
[40] |
Han S C, Razeghi S M. GPS Recovery of Daily Hydrologic and Atmospheric Mass Variation: A Methodology and Results from the Australian Continent[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9328-9343. doi: 10.1002/2017JB014603
|
[41] |
李贤炮, 钟波, 刘滔. GNSS垂直位移反演区域地表质量变化的模拟分析[J]. 武汉大学学报(信息科学版), 2022, 47(1): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202201004.htm
Li Xianpao, Zhong Bo, Liu Tao. Simulation Analysis of Inverting Regional Surface Mass Variations Using GNSS Vertical Displacement[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 45-54 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202201004.htm
|
[42] |
Li X P, Zhong B, Li J C, et al. Inversion of Terrestrial Water Storage Changes from GNSS Vertical Displacements Using a Priori Constraint: A Case Study of the Yunnan Province, China[J]. Journal of Hydrology, 2023, 617: 129126. doi: 10.1016/j.jhydrol.2023.129126
|
[43] |
Shen Y C, Yan H M, Peng P, et al. Boundary-Included Enhanced Water Storage Changes Inferred by GPS in the Pacific Rim of the Western United States[J]. Remote Sensing, 2020, 12(15): 2429. doi: 10.3390/rs12152429
|
[44] |
Lai Y R, Wang L, Bevis M, et al. Truncated Singular Value Decomposition Regularization for Estimating Terrestrial Water Storage Changes Using GPS: A Case Study over Taiwan, China [J]. Remote Sensing, 2020, 12(23): 3861. doi: 10.3390/rs12233861
|
[45] |
钟波, 李贤炮, 李建成, 等. 利用GPS垂直位移反演区域陆地水储量变化的TSVD-Tikhonov正则化方法[J]. 地球物理学报, 2023, 66(3): 997-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202303011.htm
Zhong Bo, Li Xianpao, Li Jiancheng, et al. Inversion of Regional Terrestrial Water Storage Changes Using GPS Vertical Displacements Based on TSVD-Tikhonov Regularization Method[J]. Chinese Journal of Geophysics, 2023, 66(3): 997-1014 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202303011.htm
|
[46] |
Shen Y F, Zheng W, Yin W J, et al. Improving the Inversion Accuracy of Terrestrial Water Storage Anomaly by Combining GNSS and LSTM Algorithm and Its Application in China's Mainland[J]. Remote Sensing, 2022, 14(3): 535. doi: 10.3390/rs14030535
|
[47] |
Jiang Z S, Hsu Y J, Yuan L G, et al. Estimation of Daily Hydrological Mass Changes Using Continuous GNSS Measurements in China's Mainland[J]. Journal of Hydrology, 2021, 598: 126349. doi: 10.1016/j.jhydrol.2021.126349
|
[48] |
成帅, 袁林果, 姜中山, 等. 应用GPS数据和Slepian基函数反演川云渝地区陆地水储量变化[J]. 地球物理学报, 2021, 64(4): 1167-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202104004.htm
Cheng Shuai, Yuan Linguo, Jiang Zhongshan, et al. Investigating Terrestrial Water Storage Change in Sichuan, Yunnan and Chongqing Using Slepian Basis Functions[J]. Chinese Journal of Geophysics, 2021, 64(4): 1167-1180 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202104004.htm
|
[49] |
汤苗, 钟萍, 姜中山, 等. 利用GNSS垂直位移研究长江流域陆地水储量变化的时空分布特征[J]. 地球物理学报, 2022, 65(10): 3780-3796. doi: 10.6038/cjg2022P0562
Tang Miao, Zhong Ping, Jiang Zhongshan, et al. Investigation of Spatiotemporal Characteristics of Terrestrial Water Storage Changes in the Yangtze River Basin Using GNSS Vertical Displacement Data[J]. Chinese Journal of Geophysics, 2022, 65(10): 3780-3796 doi: 10.6038/cjg2022P0562
|
[50] |
Li X P, Zhong B, Li J C, et al. Inversion of GNSS Vertical Displacements for Terrestrial Water Storage Changes Using Slepian Basis Functions[J]. Earth and Space Science, 2023, 10(2): e2022EA002608. doi: 10.1029/2022EA002608
|
[51] |
Zhang T Y, Jin S G. Evapotranspiration Variations in the Mississippi River Basin Estimated from GPS Observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4694-4701. doi: 10.1109/TGRS.2016.2549364
|
[52] |
Argus D F, Martens H R, Borsa A A, et al. Subsurface Water Flux in California's Central Valley and Its Source Watershed from Space Geodesy[J]. Geophysical Research Letters, 2022, 49(22): e2022GL099583. doi: 10.1029/2022GL099583
|
[53] |
Xu P F, Jiang T, Zhang C Y, et al. Recovering Regional Groundwater Storage Anomalies by Combining GNSS and Surface Mass Load Data: A Case Study in Western Yunnan[J]. Remote Sensing, 2022, 14(16): 4032. doi: 10.3390/rs14164032
|
[54] |
Li W Q, Zhang C Y, Wang W, et al. Inversion of Regional Groundwater Storage Changes Based on the Fusion of GNSS and GRACE Data: A Case Study of Shaanxi–Gansu–Ningxia[J]. Remote Sensing, 2023, 15(2): 520. doi: 10.3390/rs15020520
|
[55] |
Zhao M, Geruo A, Velicogna I, et al. Satellite Observations of Regional Drought Severity in the Continental United States Using GRACE-based Terrestrial Water Storage Changes[J]. Journal of Climate, 2017, 30(16): 6297-6308. doi: 10.1175/JCLI-D-16-0458.1
|
[56] |
Milliner C, Materna K, Bürgmann R, et al. Tracking the Weight of Hurricane Harvey's Stormwater Using GPS Data[J]. Science Advances, 2018, 4(9): eaau2477. doi: 10.1126/sciadv.aau2477
|
[57] |
Jiang Z S, Hsu Y J, Yuan L G, et al. Monitoring Time-Varying Terrestrial Water Storage Changes Using Daily GNSS Measurements in Yunnan, Southwest China[J]. Remote Sensing of Environment, 2021, 254: 112249. doi: 10.1016/j.rse.2020.112249
|
[58] |
杨兴海, 袁林果, 姜中山, 等. 应用GPS垂向位移定量分析2011—2020年云南省极端干旱时空特征[J]. 地球物理学报, 2022, 65(8): 2828-2843. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202208004.htm
Yang Xinghai, Yuan Linguo, Jiang Zhongshan, et al. Quantitative Analysis of Abnormal Drought in Yunnan Province from 2011 to 2020 Using GPS Vertical Displacement Observations[J]. Chinese Journal of Geophysics, 2022, 65(8): 2828-2843 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202208004.htm
|
[59] |
Zhu H, Chen K J, Hu S Q, et al. Using the Global Navigation Satellite System and Precipitation Data to Establish the Propagation Characteristics of Meteorological and Hydrological Drought in Yunnan, China[J]. Water Resources Research, 2023, 59(4): e2022WR033126. doi: 10.1029/2022WR033126
|
[60] |
Zhu H, Chen K J, Hu S Q, et al. Characterizing Hydrological Droughts Within Three Watersheds in Yunnan, China from GNSS-Inferred Terrestrial Water Storage Changes Constrained by GRACE Data[J]. Geophysical Journal International, 2023, 235(2): 1581-1599. doi: 10.1093/gji/ggad321
|
[61] |
Peidou A, Argus D, Landerer F, et al. GPS Displacement Dataset for Study of Elastic Surface Mass Variations[J]. Earth System Science Data Discussions, 2023, 1: 1‒23.
|
[62] |
Liu B, Yu W K, Dai W J, et al. Estimation of Terrestrial Water Storage Variations in Sichuan-Yunnan Region from GPS Observations Using Independent Component Analysis[J]. Remote Sensing, 2022, 14(2): 282. doi: 10.3390/rs14020282
|
[63] |
Wang S Y, Li J, Chen J L, et al. On the Improvement of Mass Load Inversion with GNSS Horizontal Deformation: A Synthetic Study in Central China[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(10): e2021JB023696. doi: 10.1029/2021JB023696
|
[64] |
Fok H S, Liu Y X. An Improved GPS-Inferred Seasonal Terrestrial Water Storage Using Terrain-Corrected Vertical Crustal Displacements Constrained by GRACE[J]. Remote Sensing, 2019, 11(12): 1433. doi: 10.3390/rs11121433
|
[65] |
Li X P, Zhong B, Li J C, et al. Joint Inversion of GNSS and GRACE/GFO Data for Terrestrial Water Storage Changes in the Yangtze River Basin[J]. Geophysical Journal International, 2023, 233(3): 1596-1616. doi: 10.1093/gji/ggad014
|
[66] |
Yang X H, Yuan L G, Jiang Z S, et al. Investigating Terrestrial Water Storage Changes in Southwest China by Integrating GNSS and GRACE/GRACE-FO Observations[J]. Journal of Hydrology: Regional Studies, 2023, 48: 101457. doi: 10.1016/j.ejrh.2023.101457
|
[67] |
Adusumilli S, Borsa A A, Fish M A, et al. A Decade of Water Storage Changes Across the Contiguous United States from GPS and Satellite Gravity[J]. Geophysical Research Letters, 2019, 46(22): 13006-13015. doi: 10.1029/2019GL085370
|
[68] |
Carlson G, Werth S, Shirzaei M. Joint Inversion of GNSS and GRACE for Terrestrial Water Storage Change in California[J]. Journal of Geophysical Research Solid Earth, 2022, 127(3): e2021JB023135. doi: 10.1029/2021JB023135
|
[69] |
Zaitchik B F, Rodell M, Reichle R H. Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin[J]. Journal of Hydrometeorology, 2008, 9(3): 535-548. doi: 10.1175/2007JHM951.1
|
[70] |
Yin G H, Forman B A, Wang J. Assimilation of Ground-based GPS Observations of Vertical Displacement into a Land Surface Model to Improve Terrestrial Water Storage Estimates[J]. Water Resources Research, 2021, 57(2): e2020WR028763. doi: 10.1029/2020WR028763
|
[71] |
Chen K, Liu G X, Xiang W, et al. Assimilation of SBAS-InSAR Based Vertical Deformation into Land Surface Model to Improve the Estimation of Terrestrial Water Storage[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2826-2835. doi: 10.1109/JSTARS.2022.3162228
|
[1] | KUANG Cuilin, ZHANG Jinsheng, LU Chenlong, YI Zhonghai. Single-and Dual-Frequency Mixed Mode GPS Network for Ground Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 692-697. DOI: 10.13203/j.whugis20140051 |
[2] | RUAN Rengui, WU Xianbing, FENG Laiping. Comparison of Observation Models and Ionospheric Elimination Approaches for Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1023-1028. |
[3] | TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. A New Algorithm on Ionospheric Delay Correction for Single Frequency GPS Receivers[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 667-670. |
[4] | ZOU Xuan, JIANG Weiping, WANG Shunxi, LI Tao. GNSS Data Processing with Mixed Single and Dual Frequency Receivers for High Accuracy Near Real-time Weather Monitoring[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 58-62. |
[5] | LI Wei, CHENG Pengfei, BI Jinzhong. Regional Ionosphere Delays' Calibration and Accuracy Assessment Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1200-1203. |
[6] | TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190. |
[7] | SHI Chuang, GU Shengfeng, GENG Changjiang, SONG Weiwei. High-Precision Single-Frequency Point Positioning with Randomness of Ionosphere Delay Correction in Consideration[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 807-810. |
[8] | SONG Weiwei, SHI Chuang, YAO Yibin, YE Shirong. Ionosphere Delay Processing Methods and Positioning Precision of Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 778-781. |
[9] | ZHOU Zebo, SHEN Yunzhong, LI Bofeng. Analysis of GPS Dual-frequency Single Differenced Receiver Hardware Delay[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6): 724-727. |
[10] | ZHANG Xiaohong, LI Zhenghang, CAI Changsheng. Study on Regional Ionospheric Model Using Dual-frequency GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2001, 26(2): 140-143,159. |