Citation: | FANG Yunhao, ZHANG Wei, YUAN Nana, DING Wei. Comparative of Urban and Rural High Temperature Vulnerability Assessment in Wuhan Metropolis Based on Multi-source Data[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230450 |
[1] |
He C, Zhou L G, Yao Y R, et al. Estimating spatial effects of anthropogenic heat emissions upon the urban thermal environment in an urban agglomeration area in East China[J]. Sustainable Cities and Society, 2020,57:102046.
|
[2] |
Lai D Y, Liu W Y, Gan T T, et al. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces[J]. Science of the Total Environment, 2019,661(15):337-353.
|
[3] |
Ballester J, Quijal-Zamorano M, Méndez Turrubiates R F, et al. Heat-related mortality in Europe during the summer of 2022[J]. Nature Medicine, 2023,29(7):1857-1866.
|
[4] |
IPCC. 2001. Climate change 2001:the scientific basis. Working group II contribution to the third assessment report of the Intergovernmental Panel on Climate Change[R]. Cambridge, UK:Cambridge University Press.
|
[5] |
Xie P, Wang Y L, Peng J, et al. Health related urban heat wave vulnerability assessment:Research progress and framework[J]. Progress in Geography, 2015,34(2):165-174.(谢盼,王仰麟,彭建,等.基于居民健康的城市高温热浪灾害脆弱性评价——研究进展与框架[J]. 地理科学进展,2015,34(2):165-174.)
|
[6] |
Kotharkar R, Ghosh A. Progress in extreme heat management and warning systems:A systematic review of heat-health action plans (1995-2020)[J]. Sustainable Cities and Society, 2022,76:103487.
|
[7] |
Liu J W, Varghese B M, Hansen A, et al. Heat exposure and cardiovascular health outcomes:A systematic review and meta-analysis[J]. The Lancet Planetary Health, 2022,6(6):e484-e495.
|
[8] |
Xie P, Wang Y L, Liu Y X, et al. Incorporating social vulnerability to assess population health risk due to heat stress in China[J]. Acta Geographica Sinica, 2015,70(7):1041-1051.(谢盼,王仰麟,刘焱序,等.基于社会脆弱性的中国高温灾害人群健康风险评价[J].地理学 报,2015,70(7):1041-1051.)
|
[9] |
Xue Q, Xie M M, Guo Q, et al. Research progress on urban heat wave vulnerability assessment:A geographical perspective[J]. Progress in Geography, 2020,39(4):685-694.(薛倩,谢苗苗,郭强,等.地理学视角下城市高温热浪脆弱性评估研究进展[J].地理科学进 展,2020,39(4):685-694.)
|
[10] |
Yang H L, Xu Y L, Tao S C, et al. Vulnerability to heat waves and adaptation:A summary[J]. Science&Technology Review, 2010,28(19):98-102.(杨红龙,许吟隆,陶生才,等.高温热浪脆弱性与适应性研究进展[J].科技导报,2010,28(19):98-102.)
|
[11] |
Huang X J, Wang B, Liu M M, et al. Characteristics of urban extreme heat and assessment of social vulnerability in China[J]. Geographical Research, 2020,39(7):1534-1547.(黄晓军,王博,刘萌萌,等.中国城市高温特征及社会脆弱性评价[J].地理研 究,2020,39(7):1534-1547.)
|
[12] |
Huang X J, Qi M Y, Zhao K X, et al. Assessment of population vulnerability to heat stress and spatial differentiation in Xi'an[J]. Geographical Research, 2021,40(6):1684-1700.(黄晓军,祁明月,赵凯旭,等.高温影响下西安市人口脆弱性评估及其空间分异[J].地 理研究,2021,40(6):1684-1700.)
|
[13] |
Wu X L, Liu Q S, Liu G H, et al. Risk assessment of heat waves:A review[J]. Journal of Geo-information Science, 2019,21(7):1029-1039.(武夕琳,刘庆生,刘高焕,等.高温热浪风险评估研究综述[J].地球信息科学学报,2019,21(7):1029-1039.)
|
[14] |
Blaikie P, Cannon T, Davis I, et al. At risk:Natural hazards, people's vulnerability and disasters[M]. London, UK:Routledge, 1994.
|
[15] |
Xu Z, Crooks J L, Black D, et al. Heatwave and infants'hospital admissions under different heatwave definitions[J]. Environmental Pollution, 2017,229:525-530.
|
[16] |
Chen K, Tang Y. Identification of urban areas vulnerable to heat waves and coping strategies:A case study of Beijing Central City[J]. City Planning Review, 2019,43(12):37-44+77.(陈恺,唐燕.城市高温热浪脆弱性空间识别与规划策略应对——以北京中心城区为例[J].城市规划,2019,43(12):37-44+77.)
|
[17] |
Shui W, Chen Z C, Deng J M, et al. Evaluation of urban high temperature vulnerability of coupling adaptability in Fuzhou, China[J]. Acta Geographica Sinica, 2017,72(5):830-849.(税伟,陈志淳,邓捷铭,等.耦合适应力的福州市高温脆弱性评估[J].地理学 报,2017,72(5):830-849.)
|
[18] |
Dai X, Liu Q S, Wu X L, et al. The risk of heat wave along the Jakarta-Bandung high-speed railway in Indonesia[J]. Tropical Geography, 2021,41(1):147-158.(代欣,刘庆生,武夕琳,等.印尼雅万高铁沿线区域高温热浪风险[J].热带地理,2021,41(1):147-158.)
|
[19] |
Chen J Y, Tao H, Zhai J Q, et al. Risk assessment of extreme high temperature events over the China-Pakistan Economic Corridor[J]. Journal of Natural Disasters, 2022,31(4):65-74.(陈金雨,陶辉,翟建青,等.中巴经济走廊极端高温事件风险评估[J].自然灾害学 报,2022,31(4):65-74.)
|
[20] |
Luo X L, Du Y D, Zheng J. Risk regionalization of human health caused by high temperature&heat wave in Guangdong Province[J]. Climate Change Research, 2016,12(2):139-146.(罗晓玲,杜尧东,郑璟.广东高温热浪致人体健康风险区划[J].气候变化研究进 展,2016,12(2):139-146.)
|
[21] |
Fu H C, Deng F, Yang H, et al. Assessing heat wave risk of urban agglomeration in the middle-lower Yangtze River based on remote sensing[J]. Resources and Environment in the Yangtze Basin, 2020,29(5):1174-1182.(付含聪,邓帆,杨欢,等.基于遥感的长江中下游城 市群高温热浪风险评估[J].长江流域资源与环境,2020,29(5):1174-1182.)
|
[22] |
Gabriel K M A, Endlicher W R. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany[J]. Environmental Pollution, 2011,159(8-9):2044-2050.
|
[23] |
López-Bueno J A, Navas-Martín M A, Linares C, et al. Analysis of the impact of heat waves on daily mortality in urban and rural areas in Madrid[J]. Environmental Research, 2021,195:110892.
|
[24] |
Huang Y P, Feng Y, Zhang Y, et al. A research on spatial clusters in Wuhan Metropolitan Area:Growth process, mechanism and developmental characters[J]. Urban Planning Forum, 2011,5:1-10.(黄亚平,冯艳,张毅,等.武汉都市发展区簇群式空间成长过程、机 理及规律研究[J].城市规划学刊,2011,5:1-10.)
|
[25] |
He M, Xu Y M, Li N, et al. Assessing heat wave risk in Beijing by remote sensing[J]. Ecology and Environmental Sciences, 2017,26(4):635-642.(何苗,徐永明,李宁,等.基于遥感的北京城市高温热浪风险评估[J].生态环境学报,2017,26(4):635-642.)
|
[26] |
Hu D Y, Qiao K, Wang X L, et al. Comparison of three single-window algorithms for retrieving land-surface temperature with Landsat 8TIRS data[J]. Geomatics and Information Science of Wuhan University, 2017,42(7):869-876.(胡德勇,乔琨,王兴玲,等.利用单窗算法 反演Landsat 8 TIRS数据地表温度[J].武汉大学学报(信息科学版),2017,42(7):869-876.)
|
[27] |
Li J, Xu X, Yang J, et al. Ambient high temperature and mortality in Jinan, China:A study of heat thresholds and vulnerable populations[J]. Environmental Research, 2017,156:657-664.
|
[28] |
Lu Y, Yang J S, Huang X, et al. Effects of urban morphology on land surface temperature in local climate zones[J]. Geomatics and Information Science of Wuhan University, 2021,46(9):1412-1422.(卢阳,杨建思,黄昕,等.面向局部气候带的城市形态对地表温度的影 响[J].武汉大学学报(信息科学版),2021,46(9):1412-1422.)
|
[29] |
Wang D Z, Zhang Q, Zhu X D, et al. Multisource data evaluation of heat risk in Shanghai[J]. Journal of Beijing Normal University (Natural Science), 2021,57(5):613-623.(王丹舟,张强,朱秀迪,等.基于多源数据的上海市高温热浪风险评估[J].北京师范大学学报(自 然科学版),2021,57(5):613-623.)
|
[30] |
Yang L C, Yang H S, Fan Q X, et al. Vulnerability assessment and planning response to high-temperature wave in large cities:The case of Chengdu[J]. Planners, 2023,39(2):38-45.(杨林川,杨皓森,范强雪,等.大城市高温热浪脆弱性评价及规划应对研究——以成都市 为例[J].规划师,2023,39(2):38-45.)
|
[31] |
Zheng X M, Wang Y, Wu X Y, et al. Comparison of heat wave vulnerability between coastal and inland cities of Fujian Province in the past 20 years[J]. Progress in Geography, 2016,35(10):1197-1205.(郑雪梅,王怡,吴小影,等.近20年福建省沿海与内陆城市高温热浪 脆弱性比较[J].地理科学进展,2016,35(10):1197-1205.)
|
[32] |
Ebert U, Welsch H. Meaningful environmental indices:A social choice approach[J]. Journal of Environmental Economics and Management, 2004,47(2):270-283.
|
[1] | XU Ren, SAIMAITI A-li-mu, LI Er-zhu, WANG Wei. Task-oriented Alignment for Unsupervised Domain Adaptation of Remote sensing scene image classification[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230084 |
[2] | WANG Mengmeng, YE Yuanxin, ZHU Bai, ZHANG Guo. An Automatic Registration Method for Optical and SAR Images Based on Spatial Constraint and Structure Features[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 141-148. DOI: 10.13203/j.whugis20190354 |
[3] | CHEN Zhanlong, ZHANG Dingwen, XIE Zhong, WU Liang. Spatial Scene Matching Based on Multilevel Relevance Feedback[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1422-1428. DOI: 10.13203/j.whugis20160360 |
[4] | SUN Yizhong, YAO Chi, CHEN Shaoqin, XU Wenxiang. Geographical Elements′ Spatial Location Identification Considering Geometric Features[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1486-1489. |
[5] | PENG Mingjun. Division of Urban Spatial Information Multi-grid Based on Hierarchical Spatial Reasoning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1112-1115. |
[6] | LI Zuchuan, MA Jianwen, ZHANG Rui, LI Liwei. Extracting Damaged Buildings Information Automatically Based on Textural and Morphological Features[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 446-450. |
[7] | XIE Jibo, WU Huayi, GONG Jianya. Framework to Keep Multilevel and Heterogeneous Spatial Databases Synchronization Based on XML[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 415-418. |
[8] | LIU Zhigang, LI Deren, QIN Qianqing, SHI Wenzhong. Hierarchical Multi-category Support Vector Machines Based on Inter-class Separability in Feature Space[J]. Geomatics and Information Science of Wuhan University, 2004, 29(4): 324-328. |
[9] | RUAN Zhimin, SUN Zhenbing. Spatial Information Publication Based on Oracle Spatial and SVG[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 161-164. |
[10] | Li Lin. The Features of Spatial Database Query Languages[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 107-110. |