XU Ren, SAIMAITI A-li-mu, LI Er-zhu, WANG Wei. Task-oriented Alignment for Unsupervised Domain Adaptation of Remote sensing scene image classification[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230084
Citation: XU Ren, SAIMAITI A-li-mu, LI Er-zhu, WANG Wei. Task-oriented Alignment for Unsupervised Domain Adaptation of Remote sensing scene image classification[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230084

Task-oriented Alignment for Unsupervised Domain Adaptation of Remote sensing scene image classification

More Information
  • Received Date: October 30, 2023
  • Available Online: December 14, 2023
  • Objectives: This paper is primarily aimed at addressing the prevailing challenges in remote sensing scene image classification, specifically those associated with the utilization of heterogeneous data and the achievement of cross-domain classification. The conventional deep learning methods, while effective, often encounter limitations due to factors such as spatial scale and resolution, data sources, model assumptions, and the inherent diversity of scene data when dealing with tasks like feature transferring and model reuse. Methods: In an attempt to overcome these obstacles, we introduce a novel approach called task-oriented alignment for unsupervised domain adaptation (ToAlign UDA). This approach, borrowed from the field of computer vision, is designed to enhance cross-domain remote sensing scene image classification. The principles and optimization mechanisms of the algorithm are explained, and its classification performance is evaluated through comparative experiments. Results: ToAlign UDA is used in the experiment to train on the source domain dataset, while tests are conducted on three target datasets: NWPU-RESISC45, AID, and PatternNet. When the spatial distribution, spectral characteristics, scale, and other similarities between the source and target domains are high, ToAlign UDA achieves an overall classification accuracy of 95.16% on NWPU-RESISC45, 96.17% on AID, and 99.28% on PatternNet. Conclusions: The results clearly indicate that the ToAlign UDA approach outperforms most scene classification algorithms in terms of classification accuracy in remote sensing scene image analysis. Therefore, it holds significant potential in advancing the field of remote sensing image classification, particularly in the context of utilizing heterogeneous data and achieving cross-domain classification.
  • Related Articles

    [1]ZHANG Lefei, HE Fazhi. Hyper-spectral Image Rank-Reducing and Compression Based on Tensor Decomposition[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 193-197. DOI: 10.13203/j.whugis20140688
    [2]LIAO Lu, LI Pingxiang, YANG Jie, CHANG Hong. An Improved Method to SAR Polarimetric Calibration Based on Reciprocity Judgement Using Distributed Target[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1042-1047. DOI: 10.13203/j.whugis20140096
    [3]FU Haiqiang, WANG Changcheng, ZHU Jianjun, XIE Qinghua, ZHAO Rong. A Polarimetric Classification Method Based on Neumann Decomposition[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 607-611. DOI: 10.13203/j.whugis20130372
    [4]ZHANG Jianqing, DUAN Yan. A Supervised Classification Method of Polarimetric Sythetic ApertureRadar Data Using Watershed Segmentation and Decision Tree C5.0[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 891-896. DOI: 10.13203/j.whugis20120112
    [5]chen qihao,  liu xiuguo,  huang xiaodong,  jiang ping. an inte grated four-component model-based decomposition  of polarimetric sar with covariance matrix[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 873-877.
    [6]ZHANG Bin, MA Guorui, LIU Guoying, QIN Qianqing. MRF-Based Segmentation Algorithm Combined with Freeman Decomposition and Scattering Entropy for Polarimetric SAR Images[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1064-1067.
    [7]ZHANG Bin, YANG Ran, XIE Xing, QIN Qianqing. Classification of Fully Polarimetric SAR Image Based on Polarimetric Target Decomposition and Wishart Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 297-300.
    [8]YANG Jie, LANG Fengkai, LI Deren. An Unsupervised Wishart Classification for Fully Polarimetric SAR Image Based on Cloude-Pottier Decomposition and Polarimetric Whitening Filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 104-107.
    [9]ZHANG Haijian, YANG Wen, ZOU Tongyuan, SUN Hong. Classification of Polarimetric SAR Image Based on Four-component Scattering Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 122-125.
    [10]WANG Wenbo, FEI Pusheng, YI Xuming, ZHANG Jianguo. Denoising of SAR Images Based on Lifting SchemeWavelet Packet Transform[J]. Geomatics and Information Science of Wuhan University, 2007, 32(7): 585-588.

Catalog

    Article views (298) PDF downloads (60) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return