SUN Yizhong, YAO Chi, CHEN Shaoqin, XU Wenxiang. Geographical Elements′ Spatial Location Identification Considering Geometric Features[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1486-1489.
Citation: SUN Yizhong, YAO Chi, CHEN Shaoqin, XU Wenxiang. Geographical Elements′ Spatial Location Identification Considering Geometric Features[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1486-1489.

Geographical Elements′ Spatial Location Identification Considering Geometric Features

Funds: 国家自然科学基金资助项目(40771164);;高等学校博士学科点专项科研基金资助项目(20103207110011)
More Information
  • Received Date: October 09, 2012
  • Published Date: December 04, 2012
  • Based on the spatial position and the geometric characteristics of geographical objects,we present a method to uniquely identify geographical objects by combining their rank Quadtree grid index with spatial morphology.Based on the classic rank Quadtree grid method,we devise an algorithm to extract representative points,outline,and orientation of geographical objects in each grid.We integrate the geometry and grid information to achieve the unique identification of spatial objects.The method is applied to Nanjing city in China to identify the unique spatial location of spatial objects,and it shows improvement in the speed of spatial positioning,searching and querying of spatial objects.
  • Related Articles

    [1]NIU Jiqiang, XU Feng, YAO Gaowei, FAN Yong, LIN Hao. Quantitative Evaluation Model of the Uncertainty of Multi-scale Space Topological Relations Based on Rough-Set[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 756-761, 781. DOI: 10.13203/j.whugis20140904
    [2]WANG Xingfeng, WANG Yunjia. Organization and Scheduling of Indoor Three-Dimensional Geometric Model Based on Spatial Topological Relation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 35-42. DOI: 10.13203/j.whugis20140798
    [3]HUANG Xueping, DENG Min, WU Jing, MA Hangying. Integrated Representation and Description of Natural-language Spatial Relations Between a Line and an Area[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 230-234.
    [4]SHEN Jingwei, LUE Guonian, WEN Yongning, WU Mingguang. Integrating Representation of Topological Relationships and Direction Relationships and Their Inter-restriction[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1305-1308.
    [5]DU Shihong, GUO Luo. Deriving Direction Relations Between Uncertain Regions from Topological Relations[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 388-393.
    [6]WANG Xili, QIN Jingchan, CAO Han, SHI Jun. Extensive Representation and Realization of Spatial Topological Relation Based on SRC-Ontology[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 339-343.
    [7]GUOQingsheng, LIUXiaoli, CHENYujian. Combinational Reasoning of Topological Spatial Relations Between Two Lines[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1): 39-42.
    [8]GUO Qingsheng, DING Hong, LIU Hao, LIU Xiaoli. Combinational Reasoning of Spatial Topological Relations between Two Areas Based on Basic Spatial Relations[J]. Geomatics and Information Science of Wuhan University, 2005, 30(8): 728-731.
    [9]GUO Qingsheng, CHEN Yujian, LIU Hao. Combinational Reasoning of Spatial Topological Relations Between a Line and an Area[J]. Geomatics and Information Science of Wuhan University, 2005, 30(6): 529-532.
    [10]Chen Jun, Guo Wei. A Matrix for Describing Topological Relationships Between 3D Spatial Features[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 359-363.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return