CHEN Zhanlong, ZHANG Dingwen, XIE Zhong, WU Liang. Spatial Scene Matching Based on Multilevel Relevance Feedback[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1422-1428. DOI: 10.13203/j.whugis20160360
Citation: CHEN Zhanlong, ZHANG Dingwen, XIE Zhong, WU Liang. Spatial Scene Matching Based on Multilevel Relevance Feedback[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1422-1428. DOI: 10.13203/j.whugis20160360

Spatial Scene Matching Based on Multilevel Relevance Feedback

Funds: 

The National Key R & D Program of China 2017YFC0602204

the National Natural Science Foundation of China 41401443

the National Natural Science Foundation of China 41671400

the Natural Science Foundation of Hubei Province 2015CFA012

the Fundamental Research Funds for the Central Universities CUG160226

More Information
  • Author Bio:

    CHEN Zhanlong, PhD, associate professor, specializes in GIS theory research, geo-computation and spatial analysis, high performance computation. E-mail:Chenzhanlong2005@126.com

  • Corresponding author:

    ZHANG Dingwen, PhD. E-mail:dingwenzhang@yahoo.com

  • Received Date: September 12, 2017
  • Published Date: September 04, 2018
  • Existing spatial scene matching methods try to use low level features such as local geome-trical shape descriptors, binary spatial relations of cardinal directions or topology and so on to meet with the high level description demands from users, and lack the feedback mechanism of user subjective concepts. This paper applies the feedback relevance mechanism to spatial scene matching, analyzes the effects after studying users' needs, and then evaluates the relevance of matching results to the desired spatial scene. According to the feedback, the retrieval model updates the weights of descriptors to simulate user's perception, as a result, the retrieval fits the users' requirements much better. The experiment verifies the efficiency and feasibility by users survey and weights convergence. Experimental result shows that spatial scene matching based on multilevel relevance feedback has a high user subjectivity and accords with human's cognizance. In addition, users could obtain satisfactory result by two or three iterations.
  • [1]
    刘涛, 杜清运, 闫浩文.空间点群目标相似度计算[J].武汉大学学报·信息科学版, 2011, 36(10):1149-1153 http://ch.whu.edu.cn/CN/abstract/abstract684.shtml

    Liu Tao, Du Qingyun, Yan Haowen.Spatial Similarity Assessment of Point Clusters[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10):1149-1153 http://ch.whu.edu.cn/CN/abstract/abstract684.shtml
    [2]
    刘涛, 杜清运, 毛海辰.空间线群目标相似度计算模型研究[J].武汉大学学报·信息科学版, 2012, 37(8):992-995 http://ch.whu.edu.cn/CN/abstract/abstract293.shtml

    Liu Tao, Du Qingyun, Mao Haichen. Spatial Similarity Assessment Model and Its Application in Line Groups[J].Geomatics and Information Science of Wuhan University, 2012, 37(8):992-995 http://ch.whu.edu.cn/CN/abstract/abstract293.shtml
    [3]
    Moratz R, Lücke D, Mossakowski T. A Condensed Semantics for Qualitative Spatial Reasoning About Oriented Straight Line Segments[J].Artificial Intelligence, 2011, 175(16):2099-2127 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0224560840
    [4]
    Li Bonan, Fonseca F. TDD:A Comprehensive Model for Qualitative Spatial Similarity Assessment[J].Spatial Cognition and Computation, 2006, 6(1):31-62 doi: 10.1207/s15427633scc0601_2
    [5]
    陈占龙, 周林, 龚希, 等.基于方向关系矩阵的空间方向相似性定量计算方法[J].测绘学报, 2015, 44(7):813-821 http://d.old.wanfangdata.com.cn/Periodical/chxb201507016

    Chen Zhanlong, Zhou Lin, Gong Xi, et al. A Quantitative Calculation Method of Spatial Direction Similarity Based on Direction Relation Matrix[J].Acta Geodaetica et Cartographica Sinica, 2015, 44(7):813-821 http://d.old.wanfangdata.com.cn/Periodical/chxb201507016
    [6]
    Jan S, Schwering A, Schultz C, et al. RCC11: A Finer Topological Representation for the Alignment of Regions in Sketch Maps[C]. International Workshop on Qualitative Reasoning, Minneapolis, USA, 2015
    [7]
    Chipofya M, Schwering A, Binor T. Matching Qualitative Spatial Scene Descriptions á la Tabu[M]//Chipofya M, Schwering A, Binor T. Advances in Soft Computing and Its Applications. Berlin, Heidelberg: Springer, 2013
    [8]
    Rocha R, Saito P T M, Bugatti P H. A Novel Framework for Content-Based Image Retrieval Through Relevance Feedback Optimization[C]. Iberoamerican Congress on Pattern Recognition, Montevideo, Uruguay, 2015
    [9]
    Lu H, Huang X, Yang L, et al. A Novel Long-Term Learning Algorithm for Relevance Feedback in Content-Based Image Retrieval[J]. Telecommunications Systems, 2013, 54(3):265-275 doi: 10.1007/s11235-013-9732-z
    [10]
    Mosbah M, Boucheham B. Majority Voting Re-ranking Algorithm for Content Based-Image Retrieval[C]. Metadata and Semantics Research Conference, Manchester, UK, 2015
    [11]
    陈占龙, 吕梦楼, 吴亮, 等.基于特征矩阵和关联图的空间场景相似性度量方法[J].武汉大学学报·信息科学版, 2017, 42(7):956-962 http://ch.whu.edu.cn/CN/abstract/abstract5780.shtml

    Chen Zhanlong, Lü Menglou, Wu Liang, et al. Space Scene Similarity Measurement Based on Feature Matrix and Associated Graph[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7):956-962 http://ch.whu.edu.cn/CN/abstract/abstract5780.shtml
    [12]
    陈占龙, 冯齐奇, 吴信才.复合面状对象拓扑关系的表达模型[J].测绘学报, 2015, 44(4):438-444 http://d.old.wanfangdata.com.cn/Periodical/chxb201504012

    Chen Zhanlong, Feng Qiqi, Wu Xincai. Representation Model of Topological Relations Between Complex Planar Objects[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4):438-444 http://d.old.wanfangdata.com.cn/Periodical/chxb201504012
    [13]
    Chen Zhanlong, Xu Yongyang, Wu Liang. Vector Planar Elements:Geometrical Similarity Measurement Based on Fourier Descriptors[J]. Geomatica, 2015, 69(4):385-394 doi: 10.5623/cig2015-401
    [14]
    Tong S, Koller D. Support Vector Machine Active Learning with Applications to Text Classification[J]. Journal of Machine Learning Research, 2001, 2(11):45-66 doi: 10.1162-153244302760185243/
    [15]
    Rui Y, Huang T. Optimizing Learning in Image Retrieval[C]. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, SC, USA, 2000
    [16]
    Chen Y, Zhou X S, Huang T S. One-Class SVM for Learning in Image Retrieval[C]. International Conference on Image Processing, Makedonia Palace Hotel, Thessaloniki, Greece, 2001
    [17]
    Zhou X S, Huang T S. Small Sample Learning Du-ring Multimedia Retrieval Using Biasmap[C]. The 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2001
    [18]
    Rui Y, Huang T S, Ortega M, et al. Relevance Feedback:A Power Tool for Interactive Content-Based Image Retrieval[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(5):644-655 doi: 10.1109/76.718510
  • Related Articles

    [1]WU Yuhao, CAO Xuefeng. Hilbert Code Index Method for Spatiotemporal Data of Virtual Battlefield Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1403-1411. DOI: 10.13203/j.whugis20190394
    [2]ZHU Jie, ZHANG Hongjun. Battlefield Geographic Environment Spatiotemporal Process Model Based on Simulation Event[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1367-1377, 1437. DOI: 10.13203/j.whugis20200175
    [3]ZHU Jie, YOU Xiong, XIA Qing, ZHANG Hongjun. Battlefield Geographic Environment Data Organizational Process Modeling Based on OOPN[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1027-1034. DOI: 10.13203/j.whugis20180313
    [4]LI Zhaoxing, ZHAI Jingsheng, WU Fang. A Shape Similarity Assessment Method for Linear Feature Generalization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1859-1864. DOI: 10.13203/j.whugis20180164
    [5]ZHU Jie, YOU Xiong, XIA Qing. Battlefield Environment Object Spatio-Temporal Data Organizing Model Based on Task-Process[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1739-1745. DOI: 10.13203/j.whugis20170074
    [6]LI Jian, ZHOU Qu, CHEN Xiaoling, TIAN Liqiao, LI Tingting. Spatial Scale Study on Quantitative Remote Sensing of Highly Dynamic Coastal/Inland Waters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 937-942. DOI: 10.13203/j.whugis20160174
    [7]XU Junkui, WU Fang, LIU Wenfu, JIN Pengfei. Settlement Incremental Updating Quality Evaluation Basedon Neighborhood Spatial Similarity[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 476-480. DOI: 10.13203/j.whugis20120117
    [8]AN Xiaoya, SUN Qun, YU Bohu. Feature Matching from Network Data at Different Scales Based on Similarity Measure[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 224-228.
    [9]LIU Pengcheng, LUO Jing, AI Tinghua, LI Chang. Evaluation Model for Similarity Based on Curve Generalization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 114-117.
    [10]Wang Qiao. Self-similarity Analysis of Cartographic Lines and the Automated Line Generalization[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 123-128.
  • Cited by

    Periodical cited type(1)

    1. 李成名,武鹏达,印洁. 图数统一表达地理模型及自补偿方法. 测绘学报. 2017(10): 1688-1697 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return