ZHANG Chenyang, YANG Jian. A Visual SLAM Method Coupled with Adaptive Point-line Features and IMU[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230347
Citation: ZHANG Chenyang, YANG Jian. A Visual SLAM Method Coupled with Adaptive Point-line Features and IMU[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230347

A Visual SLAM Method Coupled with Adaptive Point-line Features and IMU

More Information
  • Received Date: June 27, 2024
  • Available Online: July 18, 2024
  • Objectives: Visual-inertial SLAM typically outperforms pure visual SLAM in indoor scenes characterized by low or sparse textures and varying lighting conditions. Nonetheless, most existing visual-inertial SLAM encounter challenges in detecting and tracking sufficient feature points. Moreover, the prior pose measurement information from the Inertial Measurement Unit is often underutilized, resulting in reduced pose estimation accuracy and limited robustness. Methods: An adaptive point detection approach has been developed to enhance the robustness of feature point detection in images. Additionally, the LSD line feature algorithm makes it easy to detect short lines and broken line features, and the performance of the algorithm is affected by the change of illumination, resulting in "over-extraction" or "wrong-extraction" of line features. Accordingly, an adaptive algorithm for extracting line features was introduced, utilizing edge-detected binary images and incorporating the removal of erroneous lines based on the geometry characteristics of the vanishing point. Following this, the algorithm integrates the visual measurements from point-line features with the pre-integration measurement of IMU to yield reliable outcomes for front-end pose estimation and initialization parameters in a loosely coupled manner. In the back-end section of our proposed SLAM method, a unified nonlinear minimization residual function is established for visual and IMU measurements through tight coupling, optimizing for obtaining precise pose of the image or camera. Results: Our SLAM method has been validated and tested on publicly available benchmarks, showcasing its performance through ablation experiments and qualitative as well as quantitative comparative analyses against several state-of-the-art visual-inertial SLAM algorithms. Conclusions: The results indicate that our algorithm improves average localization accuracy by at least 12% and displays significant robustness.
  • Related Articles

    [1]SHA Hongjun, YUAN Xiuxiao. State-of-the-Art Binocular Image Dense Matching Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1813-1833. DOI: 10.13203/j.whugis20230037
    [2]FANG Wenjiang, LI Jingzhong. A Morphing of Linear Feature Based on Shape Context Matching[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 963-967. DOI: 10.13203/j.whugis20150674
    [3]LI Deren, LIU Laixing. Context-Aware Smart City Geospatial Web Service Composition[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 853-860. DOI: 10.13203/j.whugis20160089
    [4]AI Bo, TANG Xinming, AI Tinghua, WANG Huibing. Visualization of Spatio-Temporal Information Based on Transparency[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 229-232.
    [5]LUO An, WANG Yandong, GONG Jianya. A Semantic Matching Method for Geospatial Information Service Composition Based on Context[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 368-372.
    [6]WANG Shaoyi, DU Qingyun. Design and Implementation of Geospatial Information Services Middleware Based on Context-awareness[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7): 790-793.
    [7]SHI Yunfei, LI Lin, ZHANG Lingling. Framework and Its Core Contents Research of Ubiquitous Geographic Information[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 150-153.
    [8]SUN Min, ZHAO Xuesheng, ZHAO Renliang. Global GIS and It's Key Technologies[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 41-45.
    [9]HU Peng, LIU Peilan, HU Hai, YANG Chuanyong. Metric Space of Earth Information and Global GIS[J]. Geomatics and Information Science of Wuhan University, 2005, 30(4): 317-321.
    [10]Mai Xueliang, Zhang Zuxun, Zhang Jianqing. Global Broken Contour Connection Through Maximal Clique Graph Search Based on Relational Structural Constraints[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 101-105.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return