SHA Hongjun, YUAN Xiuxiao. State-of-the-Art Binocular Image Dense Matching Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1813-1833. DOI: 10.13203/j.whugis20230037
Citation: SHA Hongjun, YUAN Xiuxiao. State-of-the-Art Binocular Image Dense Matching Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1813-1833. DOI: 10.13203/j.whugis20230037

State-of-the-Art Binocular Image Dense Matching Method

More Information
  • Received Date: March 19, 2023
  • Available Online: September 03, 2023
  • Based on the application in the field of photogrammetry, this paper retrospects the binocular image dense matching method. First, the two categories of local dense image matching and global dense image matching methods are concisely compared, and the advantages, disadvantages, and main challenges of each method are pointed out. Then, the building occlusion problem that is difficult to deal with in dense matching is analyzed. The common building occlusion phenomenon in aerial photography is divided into five types, and the pertinence of the existing occlusion detection and filling algorithms is expounded, which provides technical ideas for solving the bottleneck problem in dense image matching. Finally, the development trend of dense image matching of binocular images is prospected. This paper can help readers fully understand the traditional binocular image dense matching technology, and it will be beneficial to the research of dense image matching based on deep learning.

  • [1]
    Remondino F, Spera M G, Nocerino E, et al. State of the Art in High Density Image Matching[J]. The Photogrammetric Record, 2014, 29(146): 144-166. doi: 10.1111/phor.12063
    [2]
    Nebiker S, Bleisch S, Christen M. Rich Point Clouds in Virtual Globes-A New Paradigm in City Modeling?[J]. Computers, Environment and Urban Systems, 2010, 34(6): 508-517. doi: 10.1016/j.compenvurbsys.2010.05.002
    [3]
    Remondino F, Spera M G, Nocerino E, et al. Dense Image Matching: Comparisons and Analyses[C]//2013 Digital Heritage International Congress, Vancouver, Canada, 2014.
    [4]
    Niemeyer J, Rottensteiner F, Soergel U. Contextual Classification of LiDAR Data and Building Object Detection in Urban Areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87: 152-165. doi: 10.1016/j.isprsjprs.2013.11.001
    [5]
    Zhang J, Lin X. Filtering Airborne LiDAR Data by Embedding Smoothness-Constrained Segmentation in Progressive TIN Densification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 81: 44-59. doi: 10.1016/j.isprsjprs.2013.04.001
    [6]
    Cheng L, Tong L H, Li M C, et al. Semi-automatic Registration of Airborne and Terrestrial Laser Scanning Data Using Building Corner Matching with Boundaries as Reliability Check[J]. Remote Sensing, 2013, 5(12): 6260-6283. doi: 10.3390/rs5126260
    [7]
    Scharstein D, Szeliski R. A Taxonomy and Evaluation of Dense Two-frame Stereo Correspondence Algorithms[J]. International Journal of Computer Vision, 2002, 47(1): 7-42.
    [8]
    Seitz S M, Curless B, Diebel J, et al. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, 2006.
    [9]
    Lazaros N, Sirakoulis G C, Gasteratos A. Review of Stereo Vision Algorithms: From Software to Hardware[J]. International Journal of Optomechatronics, 2008, 2(4): 435-462. doi: 10.1080/15599610802438680
    [10]
    Sunyoto H, van der Mark W, Gavrila D M. A Comparative Study of Fast Dense Stereo Vision Algorithms[C]//IEEE Intelligent Vehicles Symposium, Parma, Italy, 2004.
    [11]
    袁修孝, 袁巍, 许殊, 等. 航摄影像密集匹配的研究进展与展望[J]. 测绘学报, 2019, 48(12): 1542-1550. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201912007.htm

    Yuan Xiuxiao, Yuan Wei, Xu Shu, et al. Research Developments and Prospects on Dense Image Matching in Photogrammetry[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1542-1550. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201912007.htm
    [12]
    Scharstein D, Szeliski R. Middlebury Stereo Vision Research Page[EB/OL]. [2023-05-06]https://vision.middlebury.edu/
    [13]
    杨国东, 王民水. 倾斜摄影测量技术应用及展望[J]. 测绘与空间地理信息, 2016, 39(1): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201805031.htm

    Yang Guodong, Wang Minshui. The Tilt Photographic Measuration Technique and Expectation[J]. Geomatics & Spatial Information Technology, 2016, 39(1): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201805031.htm
    [14]
    李德仁, 王树根. 摄影测量与遥感概论[M]. 3版. 北京: 测绘出版社, 2021.

    Li Deren, Wang Shugen. Introduction to Photogrammetry and Remote Sensing[M]. 3rd ed. Beijing: Surveying and Mapping Publishing House, 2021.
    [15]
    黄旭. LiDAR点云约束下的多视影像密集匹配与融合方法研究[D]. 武汉: 武汉大学, 2016.

    Huang Xu. LiDAR Data Constrainted Multi-View Dense Matching and Point Clouds Fusion[D]. Wuhan: Wuhan University, 2016.
    [16]
    韩轶龙. 高分辨率卫星多视影像密集匹配与建筑物边缘优化[D]. 武汉: 武汉大学, 2020.

    Han Yilong. Dense Image Matching and Building Edge Optimization with High-Resolution Multiview Satellite Imagery[D]. Wuhan: Wuhan University, 2020.
    [17]
    Yasutaka F, Carlos H. Multi-View Stereo: A Tutorial[M]. New York: Now Foundations and Trends, 2015.
    [18]
    张永生, 刘军. 高分辨率遥感卫星应用[M]. 北京: 科学出版社, 2020.

    Zhang Yongsheng, Liu Jun. High-Resolution Remote Sensing Satellite Applications[M]. Beijing: Science Press, 2020.
    [19]
    季顺平, 罗冲, 刘瑾. 基于深度学习的立体影像密集匹配方法综述[J]. 武汉大学学报(信息科学版), 2021, 46(2): 193-202. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202102007.htm

    Ji Shunping, Luo Chong, Liu Jin. A Review of Dense Stereo Image Matching Methods Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202102007.htm
    [20]
    张剑清, 潘励, 王树根. 摄影测量学[M]. 武汉: 武汉大学出版社, 2009.

    Zhang Jianqing. Pan Li, Wang Shugen. Photogrammetry[M]. Wuhan: Wuhan University Press, 2009.
    [21]
    袁修孝, 曹金山. 高分辨率卫星遥感精确对地目标定位理论与方法[M]. 北京: 科学出版社, 2012.

    Yuan Xiuxiao, Cao Jinshan. Theory and Method of Precise Ground Target Positioning by High-Resolution Satellite Remote Sensing[M]. Beijing: Science Press, 2012.
    [22]
    胡芬, 王密, 李德仁, 等. 利用投影轨迹的卫星影像近似核线重排快速算法[J]. 武汉大学学报(信息科学版), 2009, 34(12): 1431-1435. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200912013.htm

    Hu Fen, Wang Mi, Li Deren, et al. Approximate Epipolar Rearrangement Algorithm of Satellite Stereo-imagery by Projection Trajectory[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1431-1435. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH200912013.htm
    [23]
    王奋飞, 任鑫, 刘建军, 等. 嫦娥二号影像密集匹配及DEM制作方法[J]. 武汉大学学报(信息科学版), 2017, 42(7): 918-923. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201707008.htm

    Wang Fenfei, Ren Xin, Liu Jianjun, et al. The Methods of CE-2 Image Dense Matching and Lunar DEM Extraction[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 918-923. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201707008.htm
    [24]
    Wu W H, Zhu H, Yu S Y, et al. Stereo Matching with Fusing Adaptive Support Weights[J]. IEEE Access, 2019, 7: 61960-61974. doi: 10.1109/ACCESS.2019.2916035
    [25]
    Salehian B, Fotouhi A M, Raie A A. Dynamic Programming-based Dense Stereo Matching Improvement Using an Efficient Search Space Reduction Technique[J]. Optik, 2018, 160: 1-12. doi: 10.1016/j.ijleo.2018.01.021
    [26]
    Lin Y M, Lu N G, Lou X P, et al. Matching Cost Filtering for Dense Stereo Correspondence[J]. Mathematical Problems in Engineering, 2013, 2013: 1-11.
    [27]
    寇蓉. 关于VLL影像匹配的实验[J]. 价值工程. 2010, 29(22): 144. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201022103.htm

    Kou Rong. Image Matching Experiments Using the VLL Algorithm[J]. Value Engineering, 2010, 29(22): 144. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201022103.htm
    [28]
    江万寿. 航空影像多视匹配与规则建筑物自动提取方法研究[D]. 武汉: 武汉大学, 2004.

    Jiang Wanshou. Multiple Aerial Image Matching and Automatic Building Detection[D]. Wuhan: Wuhan University, 2004.
    [29]
    Li Z. Automatic Digital Surface Model (DSM) Generation from Linear Array Images[J]. Mitteilungen-Institut fuer Geodasie und Photogrammetrie an der Eidgenoessischen Technischen Hochschule, 2005, 88: 32-48
    [30]
    范大昭, 纪松, 雷蓉. 多基线立体匹配理论、方法与应用[M]. 北京: 测绘出版社, 2017.

    Fan Dazhao, Ji Song, Lei Rong. Theory, Method and Application of Multi-Baseline Stereo Matching Technique[M]. Beijing: Surveying and Mapping Publishing House, 2017.
    [31]
    纪松. 多视匹配策略与优化方法研究[D]. 郑州: 信息工程大学, 2012.

    Ji Song. Study on the Strategy and Improvement Method of Multi-View Matching Technology[D]. Zhengzhou: Information Engineering University, 2012.
    [32]
    张彦峰. 粗略地形引导下影像匹配与地表重建的半全局优化方法[D]. 武汉: 武汉大学, 2017.

    Zhang Yanfeng. Rough Landform Guided Semi-Global Optimization for Dense Image Matching and Terrain Surface Reconstruction[D]. Wuhan: Wuhan University, 2017.
    [33]
    Zhou K, Meng X X, Cheng B. Review of Stereo Matching Algorithms Based on Deep Learning[J]. Computational Intelligence and Neuroscience, 2020, 2020: 1-12.
    [34]
    Yang Q, Ji P, Li D, et al. Fast Stereo Matching Using Adaptive Guided Filtering[J]. Image and Vision Computing, 2014, 32(3): 202-211. doi: 10.1016/j.imavis.2014.01.001
    [35]
    Kanade T, Okutomi M. A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(9): 920-932. doi: 10.1109/34.310690
    [36]
    Veksler O. Stereo Correspondence with Compact Windows via Minimum Ratio Cycle[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1654-1660. doi: 10.1109/TPAMI.2002.1114859
    [37]
    Foi A, Katkovnik V, Egiazarian K, et al. A Novel Anisotropic Local Polynomial Estimator Based on Directional Multiscale Optimizations[C]//International Conference Math in Signal Processing, Cirencester, UK, 2004.
    [38]
    Kim G, Chung S. An Accurate and Robust Stereo Matching Algorithm with Variable Windows for 3D Measurements[J]. Mechatronics, 2004, 14(6): 715-735. doi: 10.1016/j.mechatronics.2004.01.004
    [39]
    Cyganek B. Adaptive Window Growing Technique for Efficient Image Matching[C]//Pattern Recognition and Image Analysis, Estoril, Portugal, 2005.
    [40]
    Foi A, Katkovnik V, Egiazarian K. Pointwise Shape-Adaptive DCT for High-quality Denoising and Deblocking of Grayscale and Color Images[J]. IEEE Transactions on Image Processing, 2007, 16(5): 1395-1411. doi: 10.1109/TIP.2007.891788
    [41]
    Su X Y, Khoshgoftaar T M. Arbitrarily-Shaped Window Based Stereo Matching Using the Go-light Optimization Algorithm[C]//IEEE International Conference on Image Processing, San Antonio, USA, 2007.
    [42]
    Lu J B, Lafruit G, Catthoor F. Anisotropic Local High-Confidence Voting for Accurate Stereo Correspondence[C]//Image Processing: Algorithms and Systems VI, San Jose, USA, 2008.
    [43]
    Lu J B, Ke Z, Lafruit G, et al. Real-time Stereo Matching: A Cross-based Local Approach[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, China, 2009.
    [44]
    Xu Y F, Zhao Y, Ji M Q. Local Stereo Matching with Adaptive Shape Support Window Based Cost Aggregation[J]. Applied Optics, 2014, 53(29): 6885-6892. doi: 10.1364/AO.53.006885
    [45]
    Zhu S P, Yan L N. Local Stereo Matching Algorithm with Efficient Matching Cost and Adaptive Guided Image Filter[J]. The Visual Computer, 2017, 33(9): 1087-1102. doi: 10.1007/s00371-016-1264-6
    [46]
    Fusiello A, Roberto V, Trucco E. Sharp and Dense Disparity Maps Using Multiple Windows[C]//The 3rd IEEE Pacific Rim Conference on Multimedia, Hsinchu, Taiwan, China, 1997.
    [47]
    Hirschmüller H, Innocent P R, Garibaldi J. Real-time Correlation-based Stereo Vision with Reduced Border Errors[J]. International Journal of Computer Vision, 2002, 47(1): 229-246.
    [48]
    Jeon J, Kim C, Ho Y S. Sharp and Dense Disparity Maps Using Multiple Windows[C]//The 3rd IEEE Pacific Rim Conference on Multimedia, Hsinchu, Taiwan, China, 2002.
    [49]
    Demoulin C, Droogenbroeck M V. Disparity Map Determination by Multiple Adaptive Windows[C]//IEEE 17th Signal Processing and Communications Applications Conference, Antalya, Turkey, 2005.
    [50]
    Adhyapak S, Kehtarnavaz N, Nadin M. Stereo Matching via Selective Multiple Windows[J]. Journal of Electronic Imaging, 2007, 16(1): 013012. doi: 10.1117/1.2711817
    [51]
    李迎松. 摄影测量影像快速立体匹配关键技术研究[D]. 武汉: 武汉大学, 2018.

    Li Yingsong. Research on Key Techniques of Fast Stereo Matching for Photogrammetric Images[D]. Wuhan: Wuhan University, 2018.
    [52]
    Li Y, Zheng S, Wang X, et al. An Efficient Photogrammetric Stereo Matching Method for High-Resolution Images[J]. Computers & Geosciences, 2016, 97: 58-66.
    [53]
    Yoon K J, Kweon I S. Adaptive Support-Weight Approach for Correspondence Search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656. doi: 10.1109/TPAMI.2006.70
    [54]
    Hosni A, Bleyer M, Gelautz M, et al. Local Stereo Matching Using Geodesic Support Weights[C]//The 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 2009.
    [55]
    Chang N Y C, Tsai T H, Hsu B H, et al. Algorithm and Architecture of Disparity Estimation with Mini-census Adaptive Support Weight[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(6): 792-805. doi: 10.1109/TCSVT.2010.2045814
    [56]
    Nalpantidis L, Gasteratos A. Biologically and Psychophysically Inspired Adaptive Support Weights Algorithm for Stereo Correspondence[J]. Robotics and Autonomous Systems, 2010, 58(5): 457-464. doi: 10.1016/j.robot.2010.02.002
    [57]
    Geng Y N, Zhao Y, Chen H X. Stereo Matching Based on Adaptive Support-Weight Approach in RGB Vector Space[J]. Applied Optics, 2012, 51(16): 3538-3545. doi: 10.1364/AO.51.003538
    [58]
    Hosni A, Rhemann C, Bleyer M, et al. Fast Cost-volume Filtering for Visual Correspondence and Beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 504-511. doi: 10.1109/TPAMI.2012.156
    [59]
    Chen D M, Ardabilian M, Chen L M. A Novel Trilateral Filter Based Adaptive Support Weight Method for Stereo Matching[C]//British Machine Vision Conference 2013, Bristol, UK, 2013.
    [60]
    Zhu C T, Chang Y Z, Wang H M, et al. Efficient Stereo Matching with Decoupled Dissimilarity Measure Using Successive Weighted Summation[J]. Mathematical Problems in Engineering, 2014, 2014: 1-9.
    [61]
    Li Z G, Zheng J H, Zhu Z J, et al. Weighted Guided Image Filtering[J]. IEEE Transactions on Image Processing, 2015, 24(1): 120-129. doi: 10.1109/TIP.2014.2371234
    [62]
    Zhang Z H, Wang Y Q, Huang T, et al. A Weighting Algorithm Based on the Gravitational Model for Local Stereo Matching[J]. Signal, Image and Video Processing, 2020, 14(2): 315-323. doi: 10.1007/s11760-019-01557-7
    [63]
    Huang C S, Huang Y H, Chan D Y, et al. Shape-reserved Stereo Matching with Segment-based Cost Aggregation and Dual-path Refinement[J]. EURASIP Journal on Image and Video Processing, 2020, 2020(1): 1-19. doi: 10.1186/s13640-020-0490-z
    [64]
    Yang S, Lei X Y, Liu Z F, et al. An Efficient Local Stereo Matching Method Based on an Adaptive Exponentially Weighted Moving Average Filter in SLIC Space[J]. IET Image Processing, 2021, 15(8): 1722-1732. doi: 10.1049/ipr2.12140
    [65]
    Hosni A, Bleyer M, Rhemann C, et al. Real-time Local Stereo Matching Using Guided Image Filtering[C]//IEEE International Conference on Multimedia and Expo, Barcelona, Spain, 2011.
    [66]
    Hong G, Kim B. A Local Stereo Matching Algorithm Based on Weighted Guided Image Filtering for Improving the Generation of Depth Range Images[J]. Displays, 2017, 49: 80-87. doi: 10.1016/j.displa.2017.07.006
    [67]
    He K M, Sun J, Tang X O. Guided Image Filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409. doi: 10.1109/TPAMI.2012.213
    [68]
    Barnes C, Shechtman E, Finkelstein A, et al. PatchMatch[J]. ACM Transactions on Graphics, 2009, 28(3): 1-11.
    [69]
    Besse F, Rother C, Fitzgibbon A, et al. PMBP: PatchMatch Belief Propagation for Correspondence Field Estimation[J]. International Journal of Computer Vision, 2014, 110(1): 2-13. doi: 10.1007/s11263-013-0653-9
    [70]
    Heise P, Klose S, Jensen B, et al. PM-Huber: PatchMatch with Huber Regularization for Stereo Matching[C]//IEEE International Conference on Computer Vision, Sydney, Australia, 2013.
    [71]
    Xu S, Zhang F, He X, et al. PM-PM: PatchMatch with Potts Model for Object Segmentation and Stereo Matching[J]. IEEE Transactions on Image Processing, 2015, 24(7): 2182-2196. doi: 10.1109/TIP.2015.2416654
    [72]
    Lu J B, Li Y, Yang H S, et al. PatchMatch Filter: Edge-Aware Filtering Meets Randomized Search for Visual Correspondence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(9): 1866-1879. doi: 10.1109/TPAMI.2016.2616391
    [73]
    Li L C, Zhang S L, Yu X, et al. PMSC: PatchMatch-based Superpixel Cut for Accurate Stereo Matching[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(3): 679-692. doi: 10.1109/TCSVT.2016.2628782
    [74]
    Taniai T, Matsushita Y, Sato Y, et al. Continuous 3D Label Stereo Matching Using Local Expansion Moves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(11): 2725-2739. doi: 10.1109/TPAMI.2017.2766072
    [75]
    Haq Q M U, Lin C H, Ruan S J, et al. An Edge-aware Based Adaptive Multi-feature Set Extraction for Stereo Matching of Binocular Images[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(4): 1953-1967. doi: 10.1007/s12652-021-02958-8
    [76]
    Gong M L, Zhang Y, Yang Y H. Near-Real-time Stereo Matching with Slanted Surface Modeling and Sub-pixel Accuracy[J]. Pattern Recognition, 2011, 44(10/11): 2701-2710.
    [77]
    Ney H. Dynamic Programming as a Technique for Pattern Recognition[J]. Journal of Applied Probability. 1982, 3(1): 268-271.
    [78]
    Gong M L, Yang Y H. Fast Unambiguous Stereo Matching Using Reliability-based Dynamic Programming[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 998-1003. doi: 10.1109/TPAMI.2005.120
    [79]
    Hirschmuller H. Accurate and Efficient Stereo Processing by Semi-global Matching and Mutual Information[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005.
    [80]
    Hirschmüller H. Semi-global Matching-Motivation, Developments and Applications[C]//Photogrammetric Week, Stuttgart, Germany, 2011.
    [81]
    Hirschmuller H. Stereo Vision in Structured Environments by Consistent Semi-global Matching[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, 2006.
    [82]
    Humenberger M, Engelke T, Kubinger W. A Census-based Stereo Vision Algorithm Using Modified Semi-global Matching and Plane Fitting to Improve Matching Quality[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010.
    [83]
    Hermann S, Klette R. Evaluation of a New Coarse-to-fine Strategy for Fast Semi-global Stereo Matching[M]//Advances in Image and Video Technology. Berlin, Heidelberg: Springer, 2011: 395-406.
    [84]
    Rothermel M, Wenzel K, Fritsch D, et al. SURE: Photogrammetric Surface Reconstruction from Imagery[C]//LC3D Workshop, Berlin, Germany, 2012.
    [85]
    Hirschmüller H, Buder M, Ernst I. Memory Efficient Semi-global Matching[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 3(1): 371-376.
    [86]
    Pantilie C D, Nedevschi S. SORT-SGM: Subpixel Optimized Real-time Semiglobal Matching for Intelligent Vehicles[J]. IEEE Transactions on Vehicular Technology, 2012, 61(3): 1032-1042. doi: 10.1109/TVT.2012.2186836
    [87]
    Michael M, Salmen J, Stallkamp J, et al. Real-time Stereo Vision: Optimizing Semi-global Matching[C]//IEEE Intelligent Vehicles Symposium (Ⅳ), Gold Coast, Australia, 2013.
    [88]
    Facciolo G, Franchis C D, Meinhardt E. MGM: A Significantly More Global Matching for Stereovision[C]//British Machine Vision Conference, Swansea, UK, 2015.
    [89]
    Xiang J, Li Z Y, Blaauw D, et al. Low Complexity Optical Flow Using Neighbor-Guided Semi-global Matching[C]//IEEE International Conference on Image Processing (ICIP), Phoenix, USA, 2016.
    [90]
    Scharstein D, Taniai T, Sinha S N. Semi-global Stereo Matching with Surface Orientation Priors[C]//2017 International Conference on 3D Vision (3DV), Qingdao, China, 2018.
    [91]
    Lee Y, Park M G, Hwang Y, et al. Memory-Efficient Parametric Semiglobal Matching[J]. IEEE Signal Processing Letters, 2018, 25(2): 194-198. doi: 10.1109/LSP.2017.2778306
    [92]
    Li Z, Xiang J, Gong L, et al. Low Complexity, Hardware-Efficient Neighbor-Guided SGM Optical Flow for Low-Power Mobile Vision Applications[J]. IEEE Transactions on Circuits and Systems for Video Technology. 2019, 29(7): 2191-2204. doi: 10.1109/TCSVT.2018.2854284
    [93]
    纪艳华. 顾及边缘信息的航摄影像半全局密集匹配算法研究[D]. 武汉: 武汉大学, 2020.

    Ji Yanhua. Research on Semi-Global Dense Matching Algorithm for Aerial Images Using Edge Information[D]. Wuhan: Wuhan University, 2020.
    [94]
    Sun J, Zheng N N, Shum H Y. Stereo Matching Using Belief Propagation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7): 787-800. doi: 10.1109/TPAMI.2003.1206509
    [95]
    Felzenszwalb P F, Huttenlocher D P. Efficient Belief Propagation for Early Vision[J]. International Journal of Computer Vision, 2006, 70(1): 41-54. doi: 10.1007/s11263-006-7899-4
    [96]
    Yang Q X, Wang L, Ahuja N. A Constant-Space Belief Propagation Algorithm for Stereo Matching[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010.
    [97]
    Xiang X Q, Zhang M M, Li G X, et al. Real-time Stereo Matching Based on Fast Belief Propagation[J]. Machine Vision and Applications, 2012, 23(6): 1219-1227. doi: 10.1007/s00138-011-0405-1
    [98]
    Noorshams N, Wainwright M J. Stochastic Belief Propagation: A Low-Complexity Alternative to the Sum-product Algorithm[J]. IEEE Transactions on Information Theory, 2013, 59(4): 1981-2000. doi: 10.1109/TIT.2012.2231464
    [99]
    Komodakis N, Tziritas G. Image Completion Using Efficient Belief Propagation via Priority Scheduling and Dynamic Pruning[J]. IEEE Transactions on Image Processing, 2007, 16(11): 2649-2661. doi: 10.1109/TIP.2007.906269
    [100]
    Ayoobi H, Rezaeian M. Swift Distance Transformed Belief Propagation Using a Novel Dynamic Label Pruning Method[J]. IET Image Processing, 2020, 14(9): 1822-1831. doi: 10.1049/iet-ipr.2019.1035
    [101]
    Hamzah R A, Ibrahim H, Abu Hassan A H. Stereo Matching Algorithm Based on Per Pixel Difference Adjustment, Iterative Guided Filter and Graph Segmentation[J]. Journal of Visual Communication and Image Representation, 2017, 42: 145-160. doi: 10.1016/j.jvcir.2016.11.016
    [102]
    胡莘, 王仁礼, 王建荣. 航天线阵影像摄影测量定位理论与方法[M]. 北京: 测绘出版社, 2018.

    Hu Xin, Wang Renli, Wang Jianrong. Principle and Methods of Photogrammetric Positioning for Space Linear Imagery[M]. Beijing: Surveying and Mapping Publishing House, 2018.
    [103]
    张锦明. 运动恢复结构(SfM): 理论方法及地球科学应用[M]. 北京: 电子工业出版社, 2017.

    Zhang Jinming. Structure from Motion in the Geosciences[M]. Beijing: Publishing House of Electronics Industry, 2017.
    [104]
    高翔, 张涛, 刘毅. 视觉SLAM十四讲: 从理论到实践[M]. 2版. 北京: 电子工业出版社, 2019.

    Gao Xiang, Zhang Tao, Liu Yi. Fourteen Lectures on Visual SLAM: From Theory to Practice[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2019.
    [105]
    田茂. 倾斜平面约束的影像层次密集匹配[D]. 武汉: 武汉大学, 2019.

    Tian Mao. Image Hierarchical Dense Matching with Slanted Plane Structures Constrains[D]. Wuhan: Wuhan University, 2019.
    [106]
    杨文环. 光学卫星遥感影像弱纹理区域数字表面模型提取方法研究[D]. 武汉: 武汉大学, 2020.

    Yang Wenhuan. Digital Surface Model Generation of Weak Texture Regionsin Optical Satellite Remote Sensing Images[D]. Wuhan: Wuhan University, 2020.
    [107]
    Bobick A F, Intille S S. Large Occlusion Stereo[J]. International Journal of Computer Vision, 1999, 33(3): 181-200. doi: 10.1023/A:1008150329890
    [108]
    Chambon S, Crouzil A. Towards Correlation-based Matching Algorithms That Are Robust near Occlusions[C]//Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 2004.
    [109]
    Bleyer M, Gelautz M. Graph-Cut-based Stereo Matching Using Image Segmentation with Symmetrical Treatment of Occlusions[J]. Signal Processing: Image Communication, 2007, 22(2): 127-143. doi: 10.1016/j.image.2006.11.012
    [110]
    Wang Y C, Tung C P, Chung P C. Efficient Disparity Estimation Using Hierarchical Bilateral Disparity Structure Based Graph Cut Algorithm with a Foreground Boundary Refinement Mechanism[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(5): 784-801. doi: 10.1109/TCSVT.2012.2223633
    [111]
    Jang W, Ho Y. Discontinuity Preserving Disparity Estimation with Occlusion Handling[J]. Journal of Visual Communication and Image Representation, 2014, 25(7): 1595-1603. doi: 10.1016/j.jvcir.2014.07.005
    [112]
    Pang X, Zhang Y, Han J, et al. A Stereo Matching in Complex Scene and Occlusion Handling Model[J]. Optical Review, 2014, 21(6): 826-832. doi: 10.1007/s10043-014-0135-5
    [113]
    De-Maeztu L, Villanueva A, Cabeza R. Near Real-time Stereo Matching Using Geodesic Diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 410-416. doi: 10.1109/TPAMI.2011.192
    [114]
    Lin C H, Liu C W. Accurate Stereo Matching Algorithm Based on Cost Aggregation with Adaptive Support Weight[J]. The Imaging Science Journal, 2015, 63(8): 423-432. doi: 10.1179/1743131X15Y.0000000024
    [115]
    Yang Q X, Wang L, Yang R G, et al. Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 492-504. doi: 10.1109/TPAMI.2008.99
    [116]
    Hirschmuller H. Stereo Processing by Semiglobal Matching and Mutual Information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 328-341. doi: 10.1109/TPAMI.2007.1166
    [117]
    Malathi T, Bhuyan M K. Asymmetric Occlusion Detection Using Linear Regression and Weight-based Filling for Stereo Disparity Map Estimation[J]. IET Computer Vision, 2016, 10(7): 679-688. doi: 10.1049/iet-cvi.2015.0214
    [118]
    Sun J, Li Y, Kang S B, et al. Symmetric Stereo Matching for Occlusion Handling[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005.
    [119]
    袁巍. 基于光流场的密集影像匹配理论与实践[D]. 武汉: 武汉大学, 2020.

    Yuan Wei. Dense Image Matching and Its Application Based on Optical Flow Field[D]. Wuhan: Wuhan University, 2020.
    [120]
    Wu B, Zhang Y S, Zhu Q. A Triangulation-based Hierarchical Image Matching Method for Wide-Baseline Images[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(7): 695-708.
    [121]
    Li H, Zhang X G, Sun Z. A Line-based Adaptive-weight Matching Algorithm Using Loopy Belief Propagation[J]. Mathematical Problems in Engineering, 2015, 2015: 1-13.
    [122]
    Xie Y, Feng D, Chen H, et al. An Omni-scale Global-local Aware Network for Shadow Extraction in Remote Sensing Imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 193(7): 29-44.
    [123]
    Qin R J, Chen M, Huang X, et al. Disparity Refinement in Depth Discontinuity Using Robustly Matched Straight Lines for Digital Surface Model Generation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(1): 174-185. doi: 10.1109/JSTARS.2018.2886000
    [124]
    Lu X, Qin R, Huang X. Using Orthophoto for Building Boundary Sharpening in the Digital Surface Model[C]//ASPRS 2019 Annual Conference Denver, Colorado, USA, 2019.
    [125]
    Zhang K, Lu J B, Lafruit G. Scalable Stereo Matching with Locally Adaptive Polygon Approximation[C]//200815th IEEE International Conference on Image Processing, San Diego, USA, 2008.
    [126]
    Jen Y H, Dunn E, Fite-Georgel P, et al. Adaptive Scale Selection for Hierarchical Stereo[C]//22nd British Machine Vision Conference, Dundee, Scotland, 2011.
    [127]
    Zeglazi O, Rziza M, Amine A, et al. A Hierarchical Stereo Matching Algorithm Based on Adaptive Support Region Aggregation Method[J]. Pattern Recognition Letters, 2018, 112: 205-211. doi: 10.1016/j.patrec.2018.07.020
    [128]
    Ma N, Men Y B, Men C G, et al. Accurate Dense Stereo Matching Based on Image Segmentation Using an Adaptive Multi-cost Approach[J]. Symmetry, 2016, 8(12): 159. doi: 10.3390/sym8120159
    [129]
    Kordelas G A, Alexiadis D S, Daras P, et al. Enhanced Disparity Estimation in Stereo Images[J]. Image and Vision Computing, 2015, 35: 31-49. doi: 10.1016/j.imavis.2014.12.001
    [130]
    Furuta R, Ikehata S, Yamaskai T, et al. Efficiency-Enhanced Cost-Volume Filtering Featuring Coarse-to-Fine Strategy[J]. Multimedia Tools and Applications, 2018, 77(10): 12469-12491. doi: 10.1007/s11042-017-4897-1
    [131]
    Ham B, Cho M, Ponce J. Robust Guided Image Filtering Using Nonconvex Potentials[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(1): 192-207. doi: 10.1109/TPAMI.2017.2669034
    [132]
    Zhu C T, Chang Y Z. Hierarchical Guided-Image-Filtering for Efficient Stereo Matching[J]. Applied Sciences, 2019, 9(15): 3122. doi: 10.3390/app9153122
    [133]
    Chuang T Y, Ting H W, Jaw J J. Dense Stereo Matching with Edge-Constrained Penalty Tuning[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 664-668. doi: 10.1109/LGRS.2018.2805916
    [134]
    Patil S, Prakash T, Comandur B, et al. A Comparative Evaluation of SGM Variants (Including a New Variant, tMGM) for Dense Stereo Matching[J]. arXiv: 1911.09800.
    [135]
    Yao P, Feng J Q. Ensemble Learning with Advanced Fast Image Filtering Features for Semi-global Matching[J]. Machine Vision and Applications, 2021, 32(4): 1-15.
    [136]
    Mozerov M G, van de Weijer J. Accurate Stereo Matching by Two-step Energy Minimization[J]. IEEE Transactions on Image Processing, 2015, 24(3): 1153-1163. doi: 10.1109/TIP.2015.2395820
    [137]
    Haller I, Nedevschi S. Design of Interpolation Functions for Subpixel-Accuracy Stereo-Vision Systems[J]. IEEE Transactions on Image Processing, 2012, 21(2): 889-898. doi: 10.1109/TIP.2011.2163163
    [138]
    Yang Q X, Yang R G, Davis J, et al. Spatial-depth Super Resolution for Range Images[C]//IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007.
  • Cited by

    Periodical cited type(3)

    1. 张艺潇,赵忠国,郑江华. 利用MARS估算不同气象要素组合下的参考作物蒸散量. 武汉大学学报(信息科学版). 2022(05): 789-798 .
    2. 陈志坤,江俊君,姜鑫维,白露,蔡之华. 一种基于改进双边滤波的鲁棒高光谱遥感图像特征提取方法. 武汉大学学报(信息科学版). 2020(04): 504-510 .
    3. 薛晓琴,岳亚伟,夏磊,李丽,贺雄伟. 利用协同表示与神经网络的高光谱图像亚像元定位. 遥感信息. 2019(05): 69-75 .

    Other cited types(13)

Catalog

    Article views (528) PDF downloads (187) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return