Citation: | XU Caijun, HE Kefeng. Advancements in Earthquake Cycle Deformation Research Based on Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1736-1755. DOI: 10.13203/j.whugis20230304 |
The deformation response models of earthquake cycle play a crucial role in studying the entire dynamic process of earthquakes, from inception, nucleation and rupture, to postseismic adjustments, as well as in exploring the rheological properties of Earth's crust and mantle. They have significant implications in earthquake prediction, forecasting, seismic hazard mitigation and risk assessment. First, this paper introduces the characteristics of deformation during the interseismic phase of the earthquake cycle. It categorizes and summarizes the corresponding models from the perspectives of dimensionality and elastic-viscoelastic models, and it elaborates on the characteristics, limitations and historical evolution of simulation methods for coseismic deformation, with a particular focus on mainstream approaches for determining the geometry of coseismic faults and selecting smoothing schemes. Then, this paper discusses the spatiotemporal evolution features of postseismic deformation, and categorizes them according to deformation mechanisms, including poroelastic rebound, viscoelastic relaxation and postseismic afterslip. It also outlines the characteristics and limitations of simulation methods for deformation phenomena and provides a classification summary of current mainstream postseismic combined models. Furthermore, this paper explores the opportunities and challenges faced by earthquake cycle deformation simulation methods in the rapidly accumulating data environment. It emphasizes the importance of three-dimensional viscoelastic models, consi-dering the viscoelastic relaxation effects of Earth's crust and mantle. Finally, this paper offers prospects for future research directions, including single-fault earthquake cycle deformation simulation, postseismic mechanisms, dynamic modeling and interpretation of possible earthquake cycle deformation phenomena.
[1] |
Massonnet D, Rossi M, Carmona C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 364(6433): 138-142. doi: 10.1038/364138a0
|
[2] |
Wright T, Parsons B, Fielding E. Measurement of Interseismic Strain Accumulation Across the North Anatolian Fault by Satellite Radar Interferometry[J]. Geophysical Research Letters, 2001, 28(10): 2117-2120. doi: 10.1029/2000GL012850
|
[3] |
沈正康. 卫星大地测量用于东亚大陆地球动力学与地震学研究回顾[J]. 地球物理学报, 2021, 64(10): 3514-3520. doi: 10.6038/cjg2021P0541
Shen Zhengkang. Satellite Geodesy Applied to Geodynamic and Seismological Studies in East Asia: A Review[J]. Chinese Journal of Geophysics, 2021, 64(10): 3514-3520 doi: 10.6038/cjg2021P0541
|
[4] |
王琪, 乔学军, 游新兆. 中国地震大地测量: 半个世纪的历程与科学贡献[J]. 中国地震, 2020, 36(4): 647-659. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD202004002.htm
Wang Qi, Qiao Xuejun, You Xinzhao. Earthquake Geodesy in China—Endeavor and Scientific Contribution in a Half Century[J]. Earthquake Research in China, 2020, 36(4): 647-659 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD202004002.htm
|
[5] |
Wallace L M, Webb S C, Ito Y, et al. Slow Slip near the Trench at the Hikurangi Subduction Zone, New Zealand[J]. Science, 2016, 352(6286): 701-704. doi: 10.1126/science.aaf2349
|
[6] |
Scholz C H. The Mechanics of Earthquakes and Faulting [M]. New York: Cambridge University Press, 2019.
|
[7] |
Wright T J. The Earthquake Deformation Cycle[J]. Astronomy & Geophysics, 2016, 57(4): 20-26.
|
[8] |
唐河, 孙文科. 黏弹地球地震变形理论研究进展和展望[J]. 地球与行星物理论评, 2021, 52(1): 11-26. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202101003.htm
Tang He, Sun Wenke. Progress and Prospect of Deformation Theory in the Viscoelastic Earth[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(1): 11-26 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202101003.htm
|
[9] |
郭汝梦, 杨浩哲, 汤雄伟, 等. 卫星大地测量成像地震周期形变研究综述[J]. 武汉大学学报(信息科学版), 2022, 47(6): 799-806. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202206001.htm
Guo Rumeng, Yang Haozhe, Tang Xiongwei, et al. A Review on Satellite Geodesy Applied to Image the Earthquake Cycle Deformation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 799-806 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202206001.htm
|
[10] |
许才军, 熊维, 刘传金. 利用大地测量观测资料研究青藏高原三维地壳形变及地震危险性评估进展[J]. 武汉大学学报(信息科学版), 2023, 48(7): 997-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202307001.htm
Xu Caijun, Xiong Wei, Liu Chuanjin. Progress in Studying of 3D Crustal Deformation and Seismic Risk Assessment of the Tibetan Plateau Using Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 997-1009 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202307001.htm
|
[11] |
Hussain E, Wright T J, Walters R J, et al. Constant Strain Accumulation Rate Between Major Earthquakes on the North Anatolian Fault[J]. Nature Communications, 2018, 9: 1392. doi: 10.1038/s41467-018-03739-2
|
[12] |
Chuang R Y, Johnson K M. Reconciling Geologic and Geodetic Model Fault Slip-rate Discrepancies in Southern California: Consideration of Nonsteady Mantle Flow and Lower Crustal Fault Creep[J]. Geology, 2011, 39(7): 627-630. doi: 10.1130/G32120.1
|
[13] |
Elliott J R, Walters R J, Wright T J. The Role of Space-based Observation in Understanding and Responding to Active Tectonics and Earthquakes[J]. Nature Communications, 2016, 7: 13844. doi: 10.1038/ncomms13844
|
[14] |
Tsang L L H, Hill E M, Barbot S, et al. Afterslip Following the 2007 Mw 8.4 Bengkulu Earthquake in Sumatra Loaded the 2010 Mw 7.8 Mentawai Tsunami Earthquake Rupture Zone[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(12): 9034-9049. doi: 10.1002/2016JB013432
|
[15] |
Savage J C, Burford R O. Geodetic Determination of Relative Plate Motion in Central California[J]. Journal of Geophysical Research, 1973, 78(5): 832-845. doi: 10.1029/JB078i005p00832
|
[16] |
Wright T J, Elliott J R, Wang H, et al. Earthquake Cycle Deformation and the Moho: Implications for the Rheology of Continental Lithosphere[J]. Tectonophysics, 2013, 609: 504-523. doi: 10.1016/j.tecto.2013.07.029
|
[17] |
Ekbal Hussain A. Mapping and modelling the spatial variation in strain accumulation along the North Anatolian Fault[D]. Leeds, UK: University of Leeds, 2016.
|
[18] |
Qiao X, Zhou Y. Geodetic Imaging of Shallow Creep Along the Xianshuihe Fault and Its Frictional Properties[J]. Earth and Planetary Science Letters, 2021, 567: 117001. doi: 10.1016/j.epsl.2021.117001
|
[19] |
Wang K L, Zhu Y J, Nissen E, et al. On the Relevance of Geodetic Deformation Rates to Earthquake Potential[J]. Geophysical Research Letters, 2021, 48(11): e2021GL093231. doi: 10.1029/2021GL093231
|
[20] |
Nur A, Mavko G. Postseismic Viscoelastic Rebound[J]. Science, 1974, 183(4121): 204-206. doi: 10.1126/science.183.4121.204
|
[21] |
Savage J C, Prescott W H. Asthenosphere Readjustment and the Earthquake Cycle[J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B7): 3369-3376. doi: 10.1029/JB083iB07p03369
|
[22] |
DeVries P M R, Meade B J. Earthquake Cycle Deformation in the Tibetan Plateau with a Weak Mid-crustal Layer[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(6): 3101-3111. doi: 10.1002/jgrb.50209
|
[23] |
Matsu'ura M, Jackson D D, Cheng A. Dislocation Model for Aseismic Crustal Deformation at Hollister, California[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B12): 12661-12674. doi: 10.1029/JB091iB12p12661
|
[24] |
Mccaffrey R, Stein S, Freymueller J. Crustal Block Rotations and Plate Coupling [J]. Plate Boundary Zones, Geodynamic Series, 2002, 30: 101-122.
|
[25] |
Meade B J. Estimates of Seismic Potential in the Marmara Sea Region from Block Models of Secular Deformation Constrained by Global Positioning System Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(1): 208-215. doi: 10.1785/0120000837
|
[26] |
McCaffrey R. Block Kinematics of the Pacific–North America Plate Boundary in the Southwestern United States from Inversion of GPS, Seismological, and Geologic Data[J]. Journal of Geophysical Research, 2005, 110(B7): B07401.
|
[27] |
Meade B J, Loveless J P. Block Modeling with Connected Fault-network Geometries and a Linear Elastic Coupling Estimator in Spherical Coordinates[J]. Bulletin of the Seismological Society of America, 2009, 99(6): 3124-3139. doi: 10.1785/0120090088
|
[28] |
Loveless J P, Meade B J. Spatial Correlation of Interseismic Coupling and Coseismic Rupture Extent of the 2011 MW= 9.0 Tohoku-oki Earthquake[J]. Geophysical Research Letters, 2011, 38(17): 306-310.
|
[29] |
Wang H, Liu M, Cao J L, et al. Slip Rates and Seismic Moment Deficits on Major Active Faults in Chinese Mainland[J]. Journal of Geophysical Research, 2011, 116(B2): B02405.
|
[30] |
Zhang Z Q, McCaffrey R, Zhang P Z. Relative Motion Across the Eastern Tibetan Plateau: Contributions from Faulting, Internal Strain and Rotation Rates[J]. Tectonophysics, 2013, 584: 240-256. doi: 10.1016/j.tecto.2012.08.006
|
[31] |
Li Y C, Nocquet J M, Shan X J, et al. Geodetic Observations of Shallow Creep on the Laohushan-Haiyuan Fault, Northeastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(6): e2020JB021576. doi: 10.1029/2020JB021576
|
[32] |
Zhu L Y, Ji L Y, Liu C J. Interseismic Slip Rate and Locking Along the Maqin-Maqu Segment of the East Kunlun Fault, Northern Tibetan Plateau, Based on Sentinel-1 Images[J]. Journal of Asian Earth Sciences, 2021, 211: 104703. doi: 10.1016/j.jseaes.2021.104703
|
[33] |
Matsu'ura M, Sato T. A Dislocation Model for the Earthquake Cycle at Convergent Plate Boundaries[J]. Geophysical Journal International, 1989, 96(1): 23-32. doi: 10.1111/j.1365-246X.1989.tb05247.x
|
[34] |
Pollitz F F, McCrory P, Svarc J, et al. Dislocation Models of Interseismic Deformation in the Western United States[J]. Journal of Geophysical Research, 2008, 113(B4): B04413.
|
[35] |
Johnson K M, Fukuda J. New Methods for Estimating the Spatial Distribution of Locked Asperities and Stress-driven Interseismic Creep on Faults with Application to the San Francisco Bay Area, California[J]. Journal of Geophysical Research, 2010, 115(B12): 408-435.
|
[36] |
Qiao X, Zhou Y, Zhang P Z. Along-strike Variation in Fault Structural Maturity and Seismic Moment Deficits on the Yushu-Ganzi-Xianshuihe Fault System Revealed by Strain Accumulation and Regional Seismicity[J]. Earth and Planetary Science Letters, 2022, 596: 117799. doi: 10.1016/j.epsl.2022.117799
|
[37] |
Huang Z C, Zhou Y, Qiao X, et al. Kinematics of the ∼1 000 km Haiyuan Fault System in Northeastern Tibet from High-Resolution Sentinel-1 InSAR Velocities: Fault Architecture, Slip Rates, and Partitioning[J]. Earth and Planetary Science Letters, 2022, 583: 117450. doi: 10.1016/j.epsl.2022.117450
|
[38] |
Zhao D Z, Qu C Y, Bürgmann R, et al. Large-scale Crustal Deformation, Slip-rate Variation, and Strain Distribution Along the Kunlun Fault (Tibet) from Sentinel-1 InSAR Observations (2015-2020)[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(1): e2021JB022892 doi: 10.1029/2021JB022892
|
[39] |
Ou Q, Daout S, Weiss J R, et al. Large-scale Interseismic Strain Mapping of the NE Tibetan Plateau from Sentinel-1 Interferometry[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(6): e2022JB024176. doi: 10.1029/2022JB024176
|
[40] |
Lisowski M, Prescott W H, Savage J C, et al. Geodetic Estimate of Coseismic Slip During the 1989 Loma Prieta, California, Earthquake[J]. Geophysical Research Letters, 1990, 17(9): 1437-1440. doi: 10.1029/GL017i009p01437
|
[41] |
Okada Y. Internal Deformation Due to Shear and Tensile Faults in a Half-space[J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040. doi: 10.1785/BSSA0820021018
|
[42] |
Wang R J, Lorenzo-Martín F, Roth F. PSGRN/PSCMP—A New Code for Calculating Co- and Post-seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-gravitational Dislocation Theory[J]. Computers & Geosciences, 2006, 32(4): 527-541.
|
[43] |
Comninou M, Dundurs J. The Angular Dislocation in a Half Space[J]. Journal of Elasticity, 1975, 5(3): 203-216.
|
[44] |
Yoffe E H. The Angular Dislocation[J]. Philosophical Magazine, 1960, 5(50): 161-175. doi: 10.1080/14786436008243299
|
[45] |
Thomas A. Poly3D: A Three-Dimensional, Polygonal Element, Displacement Boundary Element Computer Program with Applications to Fractures, Faults, and Cavities in the Earth's Crust [D]. Palo Alto: Stanford University, 1993.
|
[46] |
Jeyakumaran M, Rudnicki J, Keer L. Modeling Slip Zones with Triangular Dislocation Elements[J]. Bulletin of the Seismological Society of America, 1992, 82: 2153-2169.
|
[47] |
Meade B J. Algorithms for the Calculation of Exact Displacements, Strains, and Stresses for Triangular Dislocation Elements in a Uniform Elastic Half Space[J]. Computers & Geosciences, 2007, 33(8): 1064-1075.
|
[48] |
Nikkhoo M, Walter T R. Triangular Dislocation: An Analytical, Artefact-free Solution[J]. Geophysical Journal International, 2015, 201(2): 1119-1141. doi: 10.1093/gji/ggv035
|
[49] |
He K F, Xu C J, Wen Y M. Coseismic and Early Post-seismic Deformations Due to the 2019 Earthquake Sequence in Ridgecrest, California[J]. Geophysical Journal International, 2022, 230(2): 957-975. doi: 10.1093/gji/ggac103
|
[50] |
Wang T, Wei S J, Shi X H, et al. The 2016 Kaikōura Earthquake: Simultaneous Rupture of the Subduction Interface and Overlying Faults[J]. Earth and Planetary Science Letters, 2018, 482: 44-51. doi: 10.1016/j.epsl.2017.10.056
|
[51] |
Ross Z E, Idini B, Jia Z, et al. Hierarchical Interlocked Orthogonal Faulting in the 2019 Ridgecrest Earthquake Sequence[J]. Science, 2019, 366(6463): 346-351. doi: 10.1126/science.aaz0109
|
[52] |
Sun W K, Okubo S, Fu G Y, et al. General Formulations of Global Co-seismic Deformations Caused by an Arbitrary Dislocation in a Spherically Symmetric Earth Model-applicable to Deformed Earth Surface and Space-fixed Point[J]. Geophysical Journal International, 2009, 177(3): 817-833. doi: 10.1111/j.1365-246X.2009.04113.x
|
[53] |
孙文科, 付广裕, 周新, 等. 球形地球模型的地震位错理论及其应用[J]. 地震学报, 2022, 44(4): 711-731. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202204015.htm
Sun Wenke, Fu Guangyu, Zhou Xin, et al. Seismic Dislocation Theory of Spherical Earth Model and Its Application[J]. Acta Seismologica Sinica, 2022, 44(4): 711-731 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202204015.htm
|
[54] |
Xu G Y, Xu C J, Wen Y M, et al. Coseismic and Postseismic Deformation of the 2016 Mw 6.2 Lampa Earthquake, Southern Peru, Constrained by Interferometric Synthetic Aperture Radar[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 4250-4272. doi: 10.1029/2018JB016572
|
[55] |
He K F, Wen Y M, Xu C J, et al. Fault Geometry and Slip Distribution of the 2021 Mw 7.4 Maduo, China, Earthquake Inferred from InSAR Measurements and Relocated Aftershocks[J]. Seismological Research Letters, 2022, 93(1): 8-20. doi: 10.1785/0220210204
|
[56] |
Hong S Y, Liu M, Liu T, et al. Fault Source Model and Stress Changes of the 2021 Mw 7.4 Maduo Earthquake, China, Constrained by InSAR and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2022, 112(3): 1284-1296. doi: 10.1785/0120210250
|
[57] |
Zhou Y, Walker R T, Elliott J R, et al. Mapping 3D Fault Geometry in Earthquakes Using High-Resolution Topography: Examples from the 2010 El Mayor-Cucapah (Mexico) and 2013 Balochistan (Pakistan) Earthquakes[J]. Geophysical Research Letters, 2016, 43(7): 3134-3142. doi: 10.1002/2016GL067899
|
[58] |
Yin Z, Xu C J, Wen Y M, et al. A New Hybrid Inversion Method for Parametric Curved Faults and Its Application to the 2008 Wenchuan (China) Earthquake[J]. Geophysical Journal International, 2016, 205(2): 954-970. doi: 10.1093/gji/ggw060
|
[59] |
Dutta R, Jónsson S, Vasyura-Bathke H. Simultaneous Bayesian Estimation of Non-planar Fault Geo-metry and Spatially-Variable Slip[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(7): e2020JB020441. doi: 10.1029/2020JB020441
|
[60] |
Wei G G, Chen K J, Meng H R. Bayesian Inversion of Finite-fault Earthquake Slip Model Using Geodetic Data, Solving for Non-planar Fault Geo-metry, Variable Slip, and Data Weighting[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(2): e2022JB025225. doi: 10.1029/2022JB025225
|
[61] |
Maerten F. Inverting for Slip on Three-dimensional Fault Surfaces Using Angular Dislocations[J]. Bulletin of the Seismological Society of America, 2005, 95(5): 1654-1665. doi: 10.1785/0120030181
|
[62] |
Lindsey E O, Mallick R, Hubbard J A, et al. Slip Rate Deficit and Earthquake Potential on Shallow Megathrusts[J]. Nature Geoscience, 2021, 14(5): 321-326. doi: 10.1038/s41561-021-00736-x
|
[63] |
Melgar Moctezuma D. Seismogeodesy and Rapid Earthquake and Tsunami Source Assessment [D]. San Diego, California; University of California, 2014.
|
[64] |
Radiguet M, Cotton F, Vergnolle M, et al. Spatial and Temporal Evolution of a Long Term Slow Slip Event: The 2006 Guerrero Slow Slip Event[J]. Geophysical Journal International, 2011, 184(2): 816-828. doi: 10.1111/j.1365-246X.2010.04866.x
|
[65] |
Amey R M J, Hooper A, Walters R J. A Bayesian Method for Incorporating Self-similarity into Earthquake Slip Inversions[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7): 6052-6071. doi: 10.1029/2017JB015316
|
[66] |
Li S Y, Barnhart W D. Impacts of Topographic Relief and Crustal Heterogeneity on Coseismic Deformation and Inversions for Fault Geometry and Slip: A Case Study of the 2015 Gorkha Earthquake in the Central Himalayan Arc[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(12): e2020GC009413. doi: 10.1029/2020GC009413
|
[67] |
Gómez D D, Bevis M, Pan E N, et al. The Influence of Gravity on the Displacement Field Produced by Fault Slip[J]. Geophysical Research Letters, 2017, 44(18): 9321-9329. doi: 10.1002/2017GL074113
|
[68] |
Marchandon M, Hollingsworth J, Radiguet M. Origin of the Shallow Slip Deficit on a Strike Slip Fault: Influence of Elastic Structure, Topography, Data Coverage, and Noise[J]. Earth and Planetary Science Letters, 2021, 554: 116696. doi: 10.1016/j.epsl.2020.116696
|
[69] |
Kaneko Y, Fialko Y. Shallow Slip Deficit Due to Large Strike-slip Earthquakes in Dynamic Rupture Simulations with Elasto-plastic Off-fault Response[J]. Geophysical Journal International, 2011, 186(3): 1389-1403. doi: 10.1111/j.1365-246X.2011.05117.x
|
[70] |
Pollitz F F. Post-earthquake Relaxation Using a Spectral Element Method: 2.5-D Case[J]. Geophysical Journal International, 2014, 198(1): 308-326. doi: 10.1093/gji/ggu114
|
[71] |
Xu X H, Liu D Y, Lavier L. Constraining Fault Damage Zone Properties from Geodesy: A Case Study near the 2019 Ridgecrest Earthquake Sequence[J]. Geophysical Research Letters, 2023, 50(5): e2022GL101692. doi: 10.1029/2022GL101692
|
[72] |
Ingleby T, Wright T J. Omori-like Decay of Postseismic Velocities Following Continental Earthquakes[J]. Geophysical Research Letters, 2017, 44(7): 3119-3130. doi: 10.1002/2017GL072865
|
[73] |
Zhou Y, Thomas M Y, Parsons B, et al. Time-dependent Postseismic Slip Following the 1978 M 7.3 Tabas-e-Golshan, Iran Earthquake Revealed by over 20 Years of ESA InSAR Observations[J]. Earth and Planetary Science Letters, 2018, 483: 64-75. doi: 10.1016/j.epsl.2017.12.005
|
[74] |
Wdowinski S, Hong S H. Postseismic Deformation Following the 2010 Haiti Earthquake: Time‐dependent Surface Subsidence Induced by Groundwater Flow in Response to a Sudden Uplift [C]//Fringe 2011 Workshop, Frascati, Italy, 2011.
|
[75] |
Freed A M. Afterslip (and only Afterslip) Following the 2004 Parkfield, California, Earthquake[J]. Geophysical Research Letters, 2007, 34(6): L06312.
|
[76] |
Savage J C, Svarc J L. Postseismic Deformation Associated with the 1992 Mw =7.3 Landers Earthquake, Southern California[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B4): 7565-7577. doi: 10.1029/97JB00210
|
[77] |
Deng J, Gurnis M, Kanamori H, et al. Viscoelastic Flow in the Lower Crust After the 1992 Landers, California, Earthquake[J]. Science, 1998, 282(5394): 1689-1692. doi: 10.1126/science.282.5394.1689
|
[78] |
Freed A M, Bürgmann R. Evidence of Power-law Flow in the Mojave Desert Mantle[J]. Nature, 2004, 430(6999): 548-551. doi: 10.1038/nature02784
|
[79] |
Fialko Y. Evidence of Fluid-filled Upper Crust from Observations of Postseismic Deformation Due to the 1992 Mw 7.3 Landers Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B8): 401-417.
|
[80] |
Masterlark T. Transient Stress-coupling Between the 1992 Landers and 1999 Hector Mine, California, Earthquakes[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1470-1486. doi: 10.1785/0120000905
|
[81] |
Wang K L, Hu Y, He J H. Deformation Cycles of Subduction Earthquakes in a Viscoelastic Earth[J]. Nature, 2012, 484(7394): 327-332. doi: 10.1038/nature11032
|
[82] |
Govers R, Furlong K P, van de Wiel L, et al. The Geodetic Signature of the Earthquake Cycle at Subduction Zones: Model Constraints on the Deep Processes[J]. Reviews of Geophysics, 2018, 56(1): 6-49. doi: 10.1002/2017RG000586
|
[83] |
Sun T, Wang K L. Viscoelastic Relaxation Following Subduction Earthquakes and Its Effects on Afterslip Determination[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(2): 1329-1344. doi: 10.1002/2014JB011707
|
[84] |
Jónsson S, Segall P, Pedersen R, et al. Post-earthquake Ground Movements Correlated to Pore-pressure Transients[J]. Nature, 2003, 424(6945): 179-183. doi: 10.1038/nature01776
|
[85] |
Mccormack K A. Earthquakes, Groundwater and Surface Deformation: Exploring the Poroelastic Response to Megathrust Earthquakes [D]. Austin: The University of Texas, 2018.
|
[86] |
Freed A M, Bürgmann R, Calais E, et al. Implications of Deformation Following the 2002 Denali, Alaska, Earthquake for Postseismic Relaxation Processes and Lithospheric Rheology[J]. Journal of Geophysical Research, 2006, 111(B1): B01401.
|
[87] |
Roeloffs E. Poroelastic Techniques in the Study of Earthquake-related Hydrologic Phenomena[M]//Advances in Geophysics Volume 37. Amsterdam: Elsevier, 1996: 135-195.
|
[88] |
Rice J R, Cleary M P. Some Basic Stress Diffusion Solutions for Fluid-saturated Elastic Porous Media with Compressible Constituents[J]. Reviews of Geophysics, 1976, 14(2): 227-241. doi: 10.1029/RG014i002p00227
|
[89] |
Peltzer G, Rosen P, Rogez F, et al. Postseismic Rebound in Fault Step-overs Caused by Pore Fluid Flow[J]. Science, 1996, 273(5279): 1202-1204. doi: 10.1126/science.273.5279.1202
|
[90] |
Peltzer G, Rosen P, Rogez F, et al. Poroelastic Rebound Along the Landers 1992 Earthquake Surface Rupture[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30131-30145. doi: 10.1029/98JB02302
|
[91] |
Biot M A. General Theory of Three-dimensional Consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. doi: 10.1063/1.1712886
|
[92] |
McCormack K A, Hesse M A. Modeling the Poroelastic Response to Megathrust Earthquakes: A Look at the 2012 Mw 7.6 Costa Rican Event[J]. Advances in Water Resources, 2018, 114: 236-248. doi: 10.1016/j.advwatres.2018.02.014
|
[93] |
Kümpel H J. Poroelasticity: Parameters Reviewed[J]. Geophysical Journal International, 1991, 105(3): 783-799. doi: 10.1111/j.1365-246X.1991.tb00813.x
|
[94] |
Wang H. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology[M]. Princeton: Princeton University Press, 2000.
|
[95] |
Carter N L, Ave'lallemant H G. High Temperature Flow of Dunite and Peridotite[J]. Geological Society of America Bulletin, 1970, 81(8): 2181. doi: 10.1130/0016-7606(1970)81[2181:HTFODA]2.0.CO;2
|
[96] |
Pollitz F F, Murray J R, Minson S E, et al. Coseismic Slip and Early Afterslip of the M 6.0 24 August 2014 South Napa, California, Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11): 11728-11747. doi: 10.1029/2019JB018470
|
[97] |
Pollitz F F. Transient Rheology of the Uppermost Mantle Beneath the Mojave Desert, California[J]. Earth and Planetary Science Letters, 2003, 215(1/2): 89-104.
|
[98] |
Huang M H, Bürgmann R, Freed A M. Probing the Lithospheric Rheology Across the Eastern Margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2014, 396: 88-96. doi: 10.1016/j.epsl.2014.04.003
|
[99] |
Qiu Q, Moore J D P, Barbot S, et al. Transient Rheology of the Sumatran Mantle Wedge Revealed by a Decade of Great Earthquakes[J]. Nature Communications, 2018, 9: 995. doi: 10.1038/s41467-018-03298-6
|
[100] |
Hetland E A. Postseismic and Interseismic Displacements near a Strike-slip Fault: A Two-dimensional Theory for General Linear Viscoelastic Rheologies[J]. Journal of Geophysical Research, 2005, 110(B10): B10401.
|
[101] |
Riva R E M, Govers R. Relating Viscosities from Postseismic Relaxation to a Realistic Viscosity Structure for the Lithosphere[J]. Geophysical Journal International, 2009, 176(2): 614-624. doi: 10.1111/j.1365-246X.2008.04004.x
|
[102] |
Yamasaki T, Houseman G A. The Signature of Depth-dependent Viscosity Structure in Post-seismic Deformation[J]. Geophysical Journal International, 2012, 190(2): 769-784. doi: 10.1111/j.1365-246X.2012.05534.x
|
[103] |
Pollitz F F. Gravitational Viscoelastic Postseismic Relaxation on a Layered Spherical Earth[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B8): 17921-17941. doi: 10.1029/97JB01277
|
[104] |
Sun T, Wang K L, Iinuma T, et al. Prevalence of Viscoelastic Relaxation After the 2011 Tohoku-oki Earthquake[J]. Nature, 2014, 514(7520): 84-87. doi: 10.1038/nature13778
|
[105] |
Yamasaki T, Wright T J, Houseman G A. Weak Ductile Shear Zone Beneath a Major Strike-slip Fault: Inferences from Earthquake Cycle Model Constrained by Geodetic Observations of the Western North Anatolian Fault Zone[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(4): 3678-3699. doi: 10.1002/2013JB010347
|
[106] |
Hetland E A, Zhang G. Effect of Shear Zones on Post-seismic Deformation with Application to the 1997 Mw 7.6 Manyi Earthquake[J]. Geophysical Journal International, 2014, 198(1): 259-269. doi: 10.1093/gji/ggu127
|
[107] |
Li S Y, Bedford J, Moreno M, et al. Spatiotemporal Variation of Mantle Viscosity and the Presence of Cratonic Mantle Inferred from 8 Years of Postseismic Deformation Following the 2010 Maule, Chile, Earthquake[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(9): 3272-3285. doi: 10.1029/2018GC007645
|
[108] |
Tsang L L H, Vergnolle M, Twardzik C, et al. Imaging Rapid Early Afterslip of the 2016 Pedernales Earthquake, Ecuador[J]. Earth and Planetary Science Letters, 2019, 524: 115724. doi: 10.1016/j.epsl.2019.115724
|
[109] |
Twardzik C, Vergnolle M, Sladen A, et al. Unravelling the Contribution of Early Postseismic Deformation Using Sub-daily GNSS Positioning[J]. Scientific Reports, 2019, 9: 1775. doi: 10.1038/s41598-019-39038-z
|
[110] |
Milliner C, Bürgmann R, Inbal A, et al. Resolving the Kinematics and Moment Release of Early Afterslip Within the First Hours Following the 2016 Mw 7.1 Kumamoto Earthquake: Implications for the Shallow Slip Deficit and Frictional Behavior of Aseismic Creep[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(9): e2019JB018928. doi: 10.1029/2019JB018928
|
[111] |
Scholz C H. Earthquakes and Friction Laws[J]. Nature, 1998, 391(6662): 37-42. doi: 10.1038/34097
|
[112] |
Smith S W, Wyss M. Displacement on the San Andreas Fault Subsequent to the 1966 Parkfield Earthquake[J]. Bulletin of the Seismological Society of America, 1968, 58(6): 1955-1973. doi: 10.1785/BSSA0580061955
|
[113] |
Ryder I, Parsons B, Wright T J, et al. Post-seismic Motion Following the 1997 Manyi (Tibet) Earthquake: InSAR Observations and Modelling[J]. Geophysical Journal International, 2007, 169(3): 1009-1027. doi: 10.1111/j.1365-246X.2006.03312.x
|
[114] |
Marone C J, Scholtz C H, Bilham R. On the Mechanics of Earthquake Afterslip[J]. Journal of Geophysical Research, 1991, 96(B5): 8441. doi: 10.1029/91JB00275
|
[115] |
Marone C. laboratory-derived Friction Laws and Their Application to Seismic Faulting[J]. Annual Review of Earth and Planetary Sciences, 1998, 26: 643-696. doi: 10.1146/annurev.earth.26.1.643
|
[116] |
Wang K, Bürgmann R. Probing Fault Frictional Properties During Afterslip Updip and Downdip of the 2017 Mw 7.3 Sarpol-e Zahab Earthquake with Space Geodesy[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(11): e2020JB020319. doi: 10.1029/2020JB020319
|
[117] |
Tian Z, Freymueller J, Yang Z Q, et al. Frictional Properties and Rheological Structure at the Ecuadorian Subduction Zone Revealed by the Postseismic Deformation Due to the 2016 Mw 7.8 Pedernales (Ecuador) Earthquake [J]. Journal of Geophysical Research: Solid Earth, 2023, 128(5): e2022JB025043. doi: 10.1029/2022JB025043
|
[118] |
Fagereng Å, Beall A. Is Complex Fault Zone Behaviour a Reflection of Rheological Heterogeneity?[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2193): 20190421.
|
[119] |
Rice J R, Gu J C. Earthquake Aftereffects and Triggered Seismic Phenomena[J]. Pure and Applied Geophysics, 1983, 121(2): 187-219. doi: 10.1007/BF02590135
|
[120] |
Segall P. Earthquake and Volcano Deformation[M]. Princeton, : Princeton University Press, 2010.
|
[121] |
Helmstetter A, Shaw B E. Afterslip and Aftershocks in the Rate-and-State Friction Law[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B1): 308-331.
|
[122] |
Johnson K M, Fukuda J, Segall P. Challenging the Rate-state Asperity Model: Afterslip Following the 2011 M 9 Tohoku-oki, Japan, Earthquake[J]. Geophysical Research Letters, 2012, 39(20): 2012GL052901. doi: 10.1029/2012GL052901
|
[123] |
Barnhart W D, Murray J R, Briggs R W, et al. Coseismic Slip and Early Afterslip of the 2015 Illapel, Chile, Earthquake: Implications for Frictional Heterogeneity and Coastal Uplift[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(8): 6172-6191. doi: 10.1002/2016JB013124
|
[124] |
Boatwright J, Cocco M. Frictional Constraints on Crustal Faulting[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B6): 13895-13909. doi: 10.1029/96JB00405
|
[125] |
Kaneko Y, Avouac J P, Lapusta N. Towards Inferring Earthquake Patterns from Geodetic Observations of Interseismic Coupling[J]. Nature Geoscience, 2010, 3(5): 363-369. doi: 10.1038/ngeo843
|
[126] |
Rolandone F, Nocquet J M, Mothes P A, et al. Areas Prone to Slow Slip Events Impede Earthquake Rupture Propagation and Promote Afterslip[J]. Science Advances, 2018, 4(1): eaao6596. doi: 10.1126/sciadv.aao6596
|
[127] |
Diao F Q, Wang R J, Wang Y B, et al. Fault Behavior and Lower Crustal Rheology Inferred from the First Seven Years of Postseismic GPS Data After the 2008 Wenchuan Earthquake[J]. Earth and Planetary Science Letters, 2018, 495: 202-212. doi: 10.1016/j.epsl.2018.05.020
|
[128] |
Barbot S, Fialko Y, Bock Y. Postseismic Deformation Due to the Mw 6.0 2004 Parkfield Earthquake: Stress-driven Creep on a Fault with Spatially Variable Rate-and-state Friction Parameters[J]. Journal of Geophysical Research, 2009, 114(B7): B07405.
|
[129] |
Hearn E H. Dynamics of Izmit Earthquake Postseismic Deformation and Loading of the Duzce Earthquake Hypocenter[J]. Bulletin of the Seismological Society of America, 2002, 92(1): 172-193. doi: 10.1785/0120000832
|
[130] |
Hu Y, Bürgmann R, Uchida N, et al. Stress-driven Relaxation of Heterogeneous Upper Mantle and Time-dependent Afterslip Following the 2011 Tohoku Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(1): 385-411. doi: 10.1002/2015JB012508
|
[131] |
Burgmann R. Time-dependent Distributed Afterslip on and Deep Below the Izmit Earthquake Rupture[J]. Bulletin of the Seismological Society of America, 2002, 92(1): 126-137. doi: 10.1785/0120000833
|
[132] |
Tian Z, Freymueller J T, Yang Z Q. Spatiotemporal Variations of Afterslip and Viscoelastic Relaxation Following the Mw 7.8 Gorkha (Nepal) Earthquake[J]. Earth and Planetary Science Letters, 2020, 532: 116031. doi: 10.1016/j.epsl.2019.116031
|
[133] |
Zhao B, Bürgmann R, Wang D Z, et al. Dominant Controls of Downdip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the Mw 7.9 Gorkha, Nepal, Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8376-8401. doi: 10.1002/2017JB014366
|
[134] |
Hsu Y J, Bechor N, Segall P, et al. Rapid Afterslip Following the 1999 Chi-Chi, Taiwan Earthquake, China [J]. Geophysical Research Letters, 2002, 29(16): 1-4.
|
[135] |
Ryder I, Bürgmann R, Pollitz F. Lower Crustal Relaxation Beneath the Tibetan Plateau and Qaidam Basin Following the 2001 Kokoxili Earthquake[J]. Geophysical Journal International, 2011, 187(2): 613-630. doi: 10.1111/j.1365-246X.2011.05179.x
|
[136] |
Fattahi H, Amelung F, Chaussard E, et al. Coseismic and Postseismic Deformation Due to the 2007 M 5.5 Ghazaband Fault Earthquake, Balochistan, Pakistan[J]. Geophysical Research Letters, 2015, 42(9): 3305-3312. doi: 10.1002/2015GL063686
|
[137] |
Langbein J. Coseismic and Initial Postseismic Deformation from the 2004 Parkfield, California, Earthquake, Observed by Global Positioning System, Electronic Distance Meter, Creepmeters, and Borehole Strainmeters[J]. Bulletin of the Seismological Society of America, 2006, 96(4B): S304-S320. doi: 10.1785/0120050823
|
[138] |
Churchill R M, Werner M J, Biggs J, et al. Afterslip Moment Scaling and Variability from a Global Compilation of Estimates[J]. Journal of Geophysical Research Solid Earth, 2022, 127(4): e2021JB023897. doi: 10.1029/2021JB023897
|
[139] |
Pollitz F F, Wicks C, Thatcher W. Mantle Flow Beneath a Continental Strike-slip Fault: Postseismic Deformation After the 1999 Hector Mine Earthquake[J]. Science, 2001, 293(5536): 1814-1818. doi: 10.1126/science.1061361
|
[140] |
Savage J C. Equivalent Strike-slip Earthquake Cycles in Half-space and Lithosphere-Asthenosphere Earth Models[J]. Journal of Geophysical Research, 1990, 95(B4): 4873. doi: 10.1029/JB095iB04p04873
|
[141] |
Suito H, Freymueller J T. A Viscoelastic and Afterslip Postseismic Deformation Model for the 1964 Alaska Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B11): 404-424.
|
[142] |
Wang M, Shen Z K, Wang Y Z, et al. Postseismic Deformation of the 2008 Wenchuan Earthquake Illuminates Lithospheric Rheological Structure and Dynamics of Eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB022399. doi: 10.1029/2021JB022399
|
[143] |
Diao F Q, Wang R J, Xiong X, et al. Overlapped Postseismic Deformation Caused by Afterslip and Viscoelastic Relaxation Following the 2015 Mw 7.8 Gorkha (Nepal) Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB020378. doi: 10.1029/2020JB020378
|
[144] |
Rollins C, Barbot S, Avouac J P. Postseismic Deformation Following the 2010 M = 7.2 El Mayor-Cucapah Earthquake: Observations, Kinematic Inversions, and Dynamic Models[J]. Pure and Applied Geophysics, 2015, 172(5): 1305-1358. doi: 10.1007/s00024-014-1005-6
|
[145] |
Fukuda J, Johnson K M. Bayesian Inversion for a Stress-driven Model of Afterslip and Viscoelastic Relaxation: Method and Application to Postseismic Deformation Following the 2011 Mw 9.0 Tohoku-Oki Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(5): e2020JB021620. doi: 10.1029/2020JB021620
|
[146] |
Moore J D P, Yu H, Tang C H, et al. Imaging the Distribution of Transient Viscosity After the 2016 Mw 7.1 Kumamoto Earthquake[J]. Science, 2017, 356(6334): 163-167. doi: 10.1126/science.aal3422
|
[147] |
Meade B J, Klinger Y, Hetland E A. Inference of Multiple Earthquake-cycle Relaxation Timescales from Irregular Geodetic Sampling of Interseismic Deformation[J]. Bulletin of the Seismological Society of America, 2013, 103(5): 2824-2835. doi: 10.1785/0120130006
|
[148] |
熊熊, 吴杭, 冯雅杉, 等. 地震活动性概率分析研究的历史、现状与挑战[J]. 大地测量与地球动力学, 2023, 43(4): 331-338. doi: 10.14075/j.jgg.2023.04.001
Xiong Xiong, Wu Hang, Feng Yashan, et al. History, Present Situation and Challenge of Probabilistic Analysis of Seismic Activity[J]. Journal of Geodesy and Geodynamics, 2023, 43(4): 331-338 doi: 10.14075/j.jgg.2023.04.001
|
[149] |
Savage J C. Viscoelastic-coupling Model for the Earthquake Cycle Driven from Below[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B11): 25525-25532. doi: 10.1029/2000JB900276
|
[150] |
Jiang G Y, Xu X W, Chen G H, et al. Geodetic Imaging of Potential Seismogenic Asperities on the Xianshuihe-Anninghe-Zemuhe Fault System, Southwest China, with a New 3-D Viscoelastic Interseismic Coupling Model[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1855-1873. doi: 10.1002/2014JB011492
|
[151] |
Diao F Q, Xiong X, Wang R J, et al. Slip Rate Variation Along the Kunlun Fault (Tibet): Results from New GPS Observations and a Viscoelastic Earthquake-cycle Deformation Model[J]. Geophysical Research Letters, 2019, 46(5): 2524-2533. doi: 10.1029/2019GL081940
|
[152] |
Li S Y, Wang K L, Wang Y Z, et al. Geodetically Inferred Locking State of the Cascadia Megathrust Based on a Viscoelastic Earth Model[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 8056-8072. doi: 10.1029/2018JB015620
|
[153] |
Takeuchi C S, Fialko Y. Dynamic Models of Interseismic Deformation and Stress Transfer from Plate Motion to Continental Transform Faults[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B5): 403-418.
|
[154] |
Luo H P, Wang K L. Finding Simplicity in the Complexity of Postseismic Coastal Uplift and Subsidence Following Great Subduction Earthquakes[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(10): e2022JB024471. doi: 10.1029/2022JB024471
|
[155] |
Duan B C. Multicycle Dynamics of the Aksay Bend Along the Altyn Tagh Fault in Northwest China: 1. A Simplified Double Bend[J]. Tectonics, 2019, 38(3): 1101-1119. doi: 10.1029/2018TC005195
|
[156] |
Duan B C, Liu Z F, Elliott A J. Multicycle Dynamics of the Aksay Bend Along the Altyn Tagh Fault in Northwest China: 2. The Realistically Complex Fault Geometry[J]. Tectonics, 2019, 38(3): 1120-1137. doi: 10.1029/2018TC005196
|
[1] | YANG Mengshi, LIAO Mingsheng, CHANG Ling, HANSSEN Ramon F.. Interpretation of Multi-epoch InSAR Deformation for Urban Scenes: A Problem Analysis and Literature Review[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1643-1660. DOI: 10.13203/j.whugis20230289 |
[2] | PENG Ying, XU Caijun, LIU Yang. Deriving 3D Coseismic Deformation Field of 2017 Jiuzhaigou Earthquake with Elastic Dislocation Model and InSAR Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1896-1905. DOI: 10.13203/j.whugis20200289 |
[3] | BIAN Weiwei, WU Jicang, ZHANG Lei, GAO Yu. Temporal and Spatial Statistical Analysis of Strong Earthquakes and Spatial Distribution Characteristics of InSAR Coseismic Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 875-886. DOI: 10.13203/j.whugis20220176 |
[4] | WANG Zhidong, WEN Xuehu, TANG Wei, LIU Hui, WANG Defu. Early Detection of Geological Hazards in Longmenshan-Dadu River Area Using Various InSAR Techniques[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 451-459. DOI: 10.13203/j.whugis20190064 |
[5] | CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461 |
[6] | WEI Erhu, WAN Lihua, JIN Shuanggen, LIU Jingnan. Estimation of ERP with Combined Observations of GNSS and SLR[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 581-585. DOI: 10.13203/j.whugis20120213 |
[7] | XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391. |
[8] | Dongmei, XU Houze. Determination of Geoid Using GPS Leveling and Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 621-624. |
[9] | XU Caijun, JIANG Guoyan, WANG Hao, WEN Yangmao. Analyzing InSAR Results Using GIS and Its Application on the Coseismic Interpretation of Mw7.9 Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 379-383. |
[10] | WU Yunsun, LI Zhenhong, LIU Jingnan, XU Caijun. Atmospheric Correction Models for InSAR Measurements[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 862-867. |