WANG Zhidong, WEN Xuehu, TANG Wei, LIU Hui, WANG Defu. Early Detection of Geological Hazards in Longmenshan-Dadu River Area Using Various InSAR Techniques[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 451-459. DOI: 10.13203/j.whugis20190064
Citation: WANG Zhidong, WEN Xuehu, TANG Wei, LIU Hui, WANG Defu. Early Detection of Geological Hazards in Longmenshan-Dadu River Area Using Various InSAR Techniques[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 451-459. DOI: 10.13203/j.whugis20190064

Early Detection of Geological Hazards in Longmenshan-Dadu River Area Using Various InSAR Techniques

More Information
  • Author Bio:

    WANG Zhidong,master,assistant engineer,specializes in InSAR data processing and analysis.E-mail: zdwang_gis@foxmail.com

  • Corresponding author:

    WEN Xuehu, master, senior engineer. E-mail: wenxuehu2006@163.com

  • Received Date: February 13, 2019
  • Published Date: March 04, 2020
  • Interferometric synthetic aperture radar (InSAR) technology is an important method to detect surface deformation. However, differential InSAR (D-InSAR), small baseline subset InSAR (SBAS-InSAR) and permanent scatters InSAR (PS-InSAR) have their own advantages and disadvantages in the early investigation of geological hazards. 127 ALOS-2 images and 96 Sentinel-1 images are processed by different InSAR techniques, and 840 surface deformations are interpreted in Longmenshan-Dadu River area. Through field investigation, it is found that about 70% of the interpreted areas show signs of deformation. The relationship between the distribution of deformation area, stratum structure, lithology and active fault is analyzed. The different InSAR monitoring results in typical deformation area are compared and analyzed. The consistency, accuracy and reliability of different InSAR technologies in the application of surface deformation monitoring are verified. We provide a reference for the engineering application in early detection of geological hazards using various InSAR techniques.
  • [1]
    廖明生, 张路, 史绪国, 等.滑坡变形雷达遥感监测方法与实践[M].北京:科学出版社, 2017

    Liao Mingsheng, Zhang Lu, Shi Xuguo, et al. Methodology and Practice of Landslide Deformation Monitoring with SAR Remote Sensing[M]. Beijing:Science Press, 2017
    [2]
    Krieger G, Fiedler H, Hajnsek I, et al. TanDEM-X: Mission Concept and Performance Analysis[C]. Geoscience and Remote Sensing Symposium, Seoul, Korea, 2005
    [3]
    张路, 廖明生, 董杰, 等.基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别:以四川丹巴为例[J].武汉大学学报·信息科学版, 2018, 43(12):2039-2049 http://ch.whu.edu.cn/CN/abstract/abstract6288.shtml

    Zhang Lu, Liao Mingsheng, Dong Jie, et al. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series InSAR Interferometry:A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2039-2049 http://ch.whu.edu.cn/CN/abstract/abstract6288.shtml
    [4]
    李永生, 冯万鹏, 张景发, 等.2014年美国加州纳帕Mw6.1地震断层参数的Sentinel-1A InSAR反演[J].地球物理学报, 2015, 58(7):2339-2349 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201507012

    Li Yongsheng, Feng Wanpeng, Zhang Jingfa, et al. Coseismic Slip of the 2014 Mw6.1 Napa, California Earthquake Revealed by Sentinel-1A InSAR[J]. Chinese Journal of Geophysics, 2015, 58(7):2339-2349 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201507012
    [5]
    许强, 李为乐, 董秀军, 等.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 2017, 36(11):2612-2628 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711002

    Xu Qiang, Li Weile, Dong Xiujun, et al. The Xinmocun Landslide on June 24, 2017 in Diexi Maoxian, Sichuan:Characteristics and Failure Mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11):2612-2628 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711002
    [6]
    Bovenga F, Nutricato R, Refice A, et al. Application of Multi-temporal Differential Interferometry to Slope Instability Detection in Urban/Peri-urban Areas[J]. Engineering Geology, 2006, 88(3):218-239 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6899af5ff245421109c78365c4636fa2
    [7]
    Laukes T R, Dehls J F, Larsen Y, et al. Regional Landslide Mapping and Monitoring in Norway Using SBAS InSAR[C]. AGU Fall Meeting, San Francisco, USA, 2007
    [8]
    杨成生, 张勤, 赵超英, 等.基于地形和GPS观测的SAR干涉图大气延迟估计[J].大地测量与地球动力学, 2011, 31(1):142-146 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201101031

    Yang Chengsheng, Zhang Qin, Zhao Chaoying, et al. Atmospheric Delay Estimation of SAR Interferograms Based on Topography and GPS Observations[J]. Journal of Geodesy and Geodynamics, 2011, 31(1):142-146 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201101031
    [9]
    Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383 doi: 10.1109/TGRS.2002.803792
    [10]
    李达, 邓喀中, 高晓雄, 等.基于SBAS-InSAR的矿区地表沉降监测与分析[J].武汉大学学报·信息科学版, 2018, 43(10):1531-1537 http://ch.whu.edu.cn/CN/abstract/abstract6223.shtml

    Li Da, Deng Kazhong, Gao Xiaoxiong, et al. Monitoring and Analysis of Surface Subsidence in Mining Area Based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1531-1537 http://ch.whu.edu.cn/CN/abstract/abstract6223.shtml
    [11]
    Guzzetti F, Manunta M, Ardizzone F, et al. Analysis of Ground Deformation Detected Using the SBAS-DInSAR Technique in Umbria, Central Italy[J]. Pure Applied Geophysics, 2009, 166:1425-1459 doi: 10.1007/s00024-009-0491-4
    [12]
    Liu G, Chen Q, Ding X. Detecting Ground Deformation with Permanent-Scatterer Network in Radar Interferometry:Algorithm and Testing Results[J]. Acta Geodaetica et Cartographica Sinica, 2007, 26:13-18 http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHXB200701002.htm
    [13]
    Bianchini S, Cigna F, Righini G, et al. Landslide Hotspot Mapping by Means of Persistent Scatter Interferometry[J]. Environment Earth Science, 2012, 67(4):1155-1172 doi: 10.1007/s12665-012-1559-5
    [14]
    Hanssen R F. Radar Interferometry:Data Interpretation and Error Analysis[M]. New York:Kluwer Academic Publishers, 2001
    [15]
    孙东.米仓山构造带构造特征及中-新生代构造演化[D].成都: 成都理工大学, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10616-1011236288.htm

    Sun Dong. The Structural Character and Meso-Cenozoic Evolution of Micang Mountain Structural Zone, Northern Sichuan Basin, China[D]. Chengdu: Chengdu University of Technology, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10616-1011236288.htm
  • Related Articles

    [1]ZHAO Qingzhi, LIU Kang, LI Zufeng, YAO Wanqiang, YAO Yibin. PWV Inversion Method Based on GNSS and Non-Measured Meteorological Parameters and Accuracy Evaluation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 453-464. DOI: 10.13203/j.whugis20210441
    [2]DONG Chuankai, YU Facheng, ZHANG Weixing, FANG Lizhe, WEI Kangli, LOU Yidong, OU Shuyuan. Research on Improved GNSS-PWV Three Factor Threshold Rainfall Forecasting Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220798
    [3]ZHAO Qingzhi, DU Zheng, WU Manyi, YAO Yibin, YAO Wanqiang. Establishment of PWV Fusion Model Using Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1823-1831. DOI: 10.13203/j.whugis20200412
    [4]YANG Pengfei, ZHAO Qingzhi, SU Jing, YAO Yibin. Analysis of Influencing Factors and Accuracy Evaluation of PWV in the Loess Plateau[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1470-1478. DOI: 10.13203/j.whugis20200390
    [5]ZHANG Wenyuan, ZHENG Nanshan, ZHANG Shubi, DING Nan, QI Mingxin, WANG Hao. GNSS Water Vapor Tomography Algorithm Constrained with High Horizontal Resolution PWV Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1627-1635. DOI: 10.13203/j.whugis20210055
    [6]WANG Yong, REN Dong, LIU Yanping, LI Jiangbo. Spring PM2.5 Concentration Model in Hebei Province Based on GNSS PWV, Wind Speed and Air Pollution Observation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1198-1204. DOI: 10.13203/j.whugis20170340
    [7]WANG Junjie, HE Xiufeng. Regional PWV Estimation Using GPS and NCEP CFSv2[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 328-333. DOI: 10.13203/j.whugis20140841
    [8]ZHAO Jingyang, SONG Shuli, ZHU Wenyao. Accuracy Assessment of Applying ERA-Interim Reanalysis Data toCalculate Ground-based GPS/PWV over China[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 935-939. DOI: 10.13203/j.whugis20120006
    [9]XU Shaoguang, XIONG Yongliang, LIU Ning, HUANG Dingfa. Real-time PWV Obtained by Ground GPS[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 407-411.
    [10]LI Guoping, CHEN Jiaona, HAO Liping. Case Study of the Rainfall Processes in Different Cloud Systems Based on GPS-PWV Data in Chengdu Plain[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 384-388.
  • Cited by

    Periodical cited type(4)

    1. 汤俊,钟正宇,丁明飞,吴学群. 利用PSO算法改进的ENN预报中国区域电离层TEC. 武汉大学学报(信息科学版). 2024(10): 1867-1878 .
    2. 毛志锋,刘立龙,黄良珂,韦律权,任丁,魏朋志. 桂林地区暴雨天气电离层VTEC时序预报模型适用性. 桂林理工大学学报. 2024(03): 481-488 .
    3. 李磊,张宁,尹淑慧,王轶卓. 基于残差修正的ARMA模型探测门源M_S6.4地震前电离层TEC异常. 大地测量与地球动力学. 2021(04): 382-386 .
    4. 李帅,李仲勤,寇瑞雄,李伟. 2019年印度尼西亚Mw7.1地震震前电离层扰动分析. 导航定位学报. 2020(06): 96-102+108 .

    Other cited types(6)

Catalog

    Article views (2160) PDF downloads (301) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return