Citation: | ZHU Jun, LAI Jianbo, XIE Yakun, CHEN Peijing, SUN Wenjin. Knowledge-Guided Spatiotemporal Narrative 3D Visualization Method for the Bridge Construction Process[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1650-1660. DOI: 10.13203/j.whugis20230239 |
Accurately describing and understanding the bridge construction process is of great significance to students' learning and field personnel's fine management. However, the bridge construction process involves a large number of objects, complex behaviors, and variable states, which leads to problems such as poor standardization and low cognitive efficiency in expression.
This paper proposes a knowledge-guided three-dimensional visualization method of spatiotemporal narrative of bridge construction process. First, we construct a bridge construction knowledge map with “object-behavior-state” three-domain association by analyzing the bridge construction process, then break through the key technologies of narrative element analysis and matching, 3D scene mapping and instantiation, and 3D dynamic visualization of spatiotemporal narrative. Finally, we develop a prototype system and carries out case study experimental analysis.
The results show that the correct rate of answering questions in the experimental group reaches 76.5%, which is 13.2% higher than that of the control group; under the comprehensive perspective of clarity, richness and comprehension difficulty, 78.8% of the personnel in the experimental group have good cognitive experience, which is 45.5% higher than that of the control group.
By accurately describing the bridge construction objects, features and interrelationships, the unified expre-ssion and association management of bridge construction knowledge map is realized, and based on this, the three-dimensional dynamic visualization expression of the bridge construction process is carried out by using spatiotemporal narratives, which effectively enhances the education level of bridge construction process cognition with the help of interactivity and immersion of three-dimensional scenes.
[1] |
卢文壮, 郑宗雨, 赵文茹, 等. 中国桥梁发展与标准化[J]. 标准科学, 2021(S1): 240-246.
Lu Wenzhuang, Zheng Zongyu, Zhao Wenru, et al. Development and Standardization of Bridge in China[J]. Standard Science, 2021(S1): 240-246.
|
[2] |
陈良江, 阎武通. 我国铁路桥梁建造技术的成就与展望[J]. 高速铁路技术, 2022, 13(4): 1-7.
Chen Liangjiang, Yan Wutong. Achievements and Prospects of Railway Bridge Construction Technology in China[J]. High Speed Railway Technology, 2022, 13(4): 1-7.
|
[3] |
孙锐娇, 刘伊生, 甘旭阳. 复杂艰险山区铁路工程建设管理关键影响因素研究[J]. 铁道学报, 2021, 43(8): 163-170.
Sun Ruijiao, Liu Yisheng, Gan Xuyang. Study on Key Environment Risk Factors of Complex Mountainous and Hazardous Railway Project[J]. Journal of the China Railway Society, 2021, 43(8): 163-170.
|
[4] |
张利国, 丁雨淋, 朱庆, 等. 铁路地理地质数据“本体域-变化域-状态域”三域关联的集成表达模型[J]. 武汉大学学报(信息科学版), 2024, 49(6): 1018-1027.
|
[5] |
朱庆, 张利国, 丁雨淋, 等. 从实景三维建模到数字孪生建模[J]. 测绘学报, 2022, 51(6): 1040-1049.
Zhu Qing, Zhang Liguo, Ding Yulin, et al. From Real 3D Modeling to Digital Twin Modeling[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1040-1049.
|
[6] |
朱庆, 李函侃, 曾浩炜, 等. 面向数字孪生川藏铁路的实体要素分类与编码研究[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1319-1327.
Zhu Qing, Li Hankan, Zeng Haowei, et al. Classification and Coding of Entity Features for Digital Twin Sichuan-Tibet Railway[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1319-1327.
|
[7] |
Zhang H, Zhao W, Han Z J, et al. Template-Based Knowledge Reuse Method for Generating High-Speed Railway Virtual Construction Scenes[J]. International Journal of Digital Earth, 2023, 16(1): 1144-1163.
|
[8] |
朱军, 朱庆, 祝兵, 等. 数字孪生驱动的桥梁智能建造方法[J]. 遥感学报, 2024, 28(5): 1340-1349.
|
[9] |
丰逍野, 朱俊波, 马耀举, 等. 基于BIM的铁路转体桥梁施工精细化管理[J]. 中国港湾建设, 2023, 43(2): 96-104.
Feng Xiaoye, Zhu Junbo, Ma Yaoju, et al. BIM-Based Refined Management of Railway Swivel Bridge Construction[J]. China Harbour Engineering, 2023, 43(2): 96-104.
|
[10] |
严赪强. 基于BIM技术的铁路桥梁施工管理及应用研究[J]. 工程与建设, 2023, 37(1): 397-399.
Yan Chengqiang. Research on Railway Bridge Construction Management and Application Based on BIM Technology[J]. Engineering and Construction, 2023, 37(1): 397-399.
|
[11] |
薛超. BIM技术在铁路桥梁施工管理及应用研究[J]. 工程机械与维修, 2022, 306(5): 257-259.
Xue Chao. BIM Technology in Railroad Bridge Construction Management and Application Research[J]. Construction Machinery & Maintenance, 2022, 306(5): 257-259.
|
[12] |
常剑锋. 钢结构桥梁在加工过程中的可视化管理[J]. 运输经理世界, 2022, 661(15): 113-115.
Chang Jianfeng. Visualization and Management of Steel Bridges During Processing[J]. Transport Business China, 2022, 661(15): 113-115.
|
[13] |
刘铮. BIM技术下的桥梁可视化施工技术[J]. 交通世界, 2019, 508(22): 124-125.
Liu Zheng. Visual Construction Technology of Bridge Under BIM Technology[J]. TranspoWorld, 2019, 508(22): 124-125.
|
[14] |
惠记庄, 樊博涵, 丁凯, 等. 基于虚拟现实的钢结构桥梁装配化施工仿真系统[J]. 建筑科学与工程学报, 2022, 39(4): 108-116.
Hui Jizhuang, Fan Bohan, Ding Kai, et al. Simu-lation System of Steel Bridge Prefabricated Construction Based on Virtual Reality[J]. Journal of Architecture and Civil Engineering, 2022, 39(4): 108-116.
|
[15] |
王同军. 铁路桥梁智能建造关键技术研究[J]. 中国铁路, 2021(9): 1-10.
Wang Tongjun. Research on Key Technologies for Intelligent Construction of Railway Bridge[J]. China Railway, 2021(9): 1-10.
|
[16] |
王猛. 装配式预应力桥可视化还建施工技术[J]. 科技与创新, 2021, 171(3): 146-147.
Wang Meng. Assembled Pre-Stressed Bridge Visuali-zation of Return Construction Technology[J]. Science and Technology & Innovation, 2021, 171(3): 146-147.
|
[17] |
韩万水, 刘焕举, 包大海, 等. 大跨钢桁梁悬索桥风-车-桥分析系统建立与可视化实现[J]. 土木工程学报, 2018, 51(3): 99-108.
Han Wanshui, Liu Huanju, Bao Dahai, et al. Establishment and Visualization of Wind-Vehicle-Bridge Analysis System for the Large-Span Steel Truss Suspension Bridge[J]. China Civil Engineering Journal, 2018, 51(3): 99-108.
|
[18] |
Sekiya H, Maruyama O, Miki C. Visualization System for Bridge Deformations Under Live Load Based on Multipoint Simultaneous Measurements of Displacement and Rotational Response Using MEMS Sensors[J]. Engineering Structures, 2017, 146: 43-53.
|
[19] |
戴公连, 陈燕洁, 党刊, 等. 高速铁路整体桥梁墩柱刚度和温度跨度研究[J]. 铁道工程学报, 2022, 39(9): 31-37.
Dai Gonglian, Chen Yanjie, Dang Kan, et al. Research on the Longitudinal Stiffness of Pier and Temperature Span of High-Speed Railway Integral Bridge[J]. Journal of Railway Engineering Society, 2022, 39(9): 31-37.
|
[20] |
肖林, 蔡俊宇, 杨妍秋, 等. 桥梁温度作用与效应2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1): 167-174.
Xiao Lin, Cai Junyu, Yang Yanqiu, et al. State-of-the-Art Research of Bridge Thermal Action and Effects in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 167-174.
|
[21] |
王双. 时空叙事可视化理论与方法研究[D]. 郑州: 信息工程大学, 2017.
Wang Shuang. Research on Theories and Methods of Spatialtemporal Narrative Visualization[D].Zhengzhou: Information Engineering University, 2017.
|
[22] |
Cattoor B, Perkins C. Re-cartographies of Landscape: New Narratives in Architectural Atlases[J]. The Cartographic Journal, 2014, 51(2): 166-178.
|
[23] |
陆佳莺, 孙梓洋, 汪亦铠, 等. 基于地图故事的“图说随园” 系统设计与实现[J]. 南京师范大学学报(工程技术版), 2019, 19(1): 86-92.
Lu Jiaying, Sun Ziyang, Wang Yikai, et al. Design and Implementation of Sui Yuan System Based on Map Story[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2019, 19(1): 86-92.
|
[24] |
张棋, 许德合, 丁严. 基于SPEI和时空立方体的中国近40年干旱时空模式挖掘[J]. 干旱地区农业研究, 2021, 39(3): 194-201.
Zhang Qi, Xu Dehe, Ding Yan. Spatiotemporal Pattern Mining of the Last 40 Years of Drought in China Based on SPEI Index and Spatiotemporal Cube[J]. Agricultural Research in the Arid Areas, 2021, 39(3): 194-201.
|
[25] |
沈雪, 任重. 基于物理模拟的示意地图动画[J]. 计算机辅助设计与图形学学报, 2018, 30(2): 225-234.
Shen Xue, Ren Zhong. Animating Cartogram Using Physical Simulation[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(2): 225-234.
|
[26] |
Li W L, Zhu J, Fu L, et al. A Rapid 3D Reproduction System of Dam-Break Floods Constrained by Post-Disaster Information[J]. Environmental Modelling & Software, 2021, 139: 104994.
|
[27] |
Ji S X, Pan S R, Cambria E, et al. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514.
|
[28] |
陈军, 刘万增, 武昊, 等. 基础地理知识服务的基本问题与研究方向[J]. 武汉大学学报(信息科学版), 2019, 44(1): 38-47.
Chen Jun, Liu Wanzeng, Wu Hao, et al. Basic Issues and Research Agenda of Geospatial Knowledge Service[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 38-47.
|
[29] |
刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600.
Liu Qiao, Li Yang, Duan Hong, et al. Knowledge Graph Construction Techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582-600.
|
[30] |
Yang J X, Xiang F Y, Li R, et al. Intelligent Bridge Management via Big Data Knowledge Engineering[J]. Automation in Construction, 2022, 135: 104-118.
|
[31] |
杨建喜, 周应新, 戴森昊. 基于语义本体的桥梁结构智能化本体模型[J]. 土木工程与管理学报, 2020, 37(3): 26-33.
Yang Jianxi, Zhou Yingxin, Dai Senhao. Intelligent Ontology Model of Bridge Structure Based on Semantic Ontology[J]. Journal of Civil Engineering and Management, 2020, 37(3): 26-33.
|
[32] |
张健俣. 利用BIM本体技术分析桥梁裂缝的研究[D]. 重庆: 重庆交通大学, 2018.
Zhang Jianyu. A Study on the Implementation of BIM Ontology on Bridge Cracks[D].Chongqing: Chongqing Jiaotong University, 2018.
|
[33] |
杨小霞, 杨建喜, 李韧, 等. 桥梁检测领域知识图谱构建与知识问答方法[J]. 计算机应用, 2022, 42(S1): 28-36.
Yang Xiaoxia, Yang Jianxi, Li Ren, et al. Know-ledge Graph Construction and Knowledge Question Answering Method for Bridge Inspection Domain[J]. Journal of Computer Applications, 2022, 42(S1): 28-36.
|
[34] |
苏世亮, 张江玥, 杜清运, 等. 历史文化风貌区叙事地图设计: 可读性框架与表达策略[J]. 测绘科学, 2021, 46(10): 194-201.
Su Shiliang, Zhang Jiangyue, Du Qingyun, et al. Narrative Map Design for the Areas with Historical Cultural Features—Readable Framework and Visuali-zation Strategy[J]. Science of Surveying and Mapping, 2021, 46(10): 194-201.
|
[1] | XI Menghan, WU Lin, LI Qianqian, BAO Lifeng, SUN Heping. Feature Extraction and Suitability Analysis of Gravity Matching Navigation Reference Map[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 53-62. DOI: 10.13203/j.whugis20220389 |
[2] | WANG Yue, SUN Fuping. Analysis and Thinking on the Development of Performance Evaluation and Efficacy Evaluation for Satellite Navigation Countermeasures[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240314 |
[3] | MAO Ning, LI An, XU Jiangning, QIN Fangjun, LI Fangneng. Observability Analysis and Robust Fusion Algorithms of INS/Gravity Integrated Navigation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2113-2121. DOI: 10.13203/j.whugis20230075 |
[4] | GAO Weiguang, SUI Yeye, LI Min, HU Zhigang, SU Chengeng, SU Mudan. Application Mode and Usage Suggestion of BDS Downlink Navigation Signals for RNSS Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1444-1454. DOI: 10.13203/j.whugis20220691 |
[5] | XIAO Yun, ZHANG Jinbai, CAO Jie, CHEN Kaining, WANG Yukang, HONG Xiaodong. Suitability Analysis of Gravity Matching Navigation Based on Multiple Attribute Decision Making Theory[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1089-1099. DOI: 10.13203/j.whugis20230073 |
[6] | WAN Xiaoyun, WU Yunlong, GUO Hengyang, LI Ming. Development Status and Influencing Factor Analysis of Underwater Matching Navigation Based on Gravity Field Products[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 879-890. DOI: 10.13203/j.whugis20220568 |
[7] | WU Yanxiong, TENG Yuntian, WU Qiong, XU Xing, ZHANG Bing. Error Correction Model and Uncertainty Analysis of the Shipborne Absolute Gravity Measurement System[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 492-500. DOI: 10.13203/j.whugis20190412 |
[8] | JIN Jihang, BIAN Shaofeng. Analysis of Inertial Navigation System Positioning Error Caused by Gravity Disturbance[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 30-32. |
[9] | QIN Zheng, BIAN Xinqian, SHI Xiaocheng, LI Juan. Simulation Platform of Gravity Aided Inertial Navigation System for Underwater Vehicle[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 755-758. |
[10] | Luo Zhicai, Chao Dingbo, Ning Jinsheng. Spherical Harmonic Analysis on Gravity Gradient Tensor[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 346-349. |