MAO Ning, LI An, XU Jiangning, QIN Fangjun, LI Fangneng. Observability Analysis and Robust Fusion Algorithms of INS/Gravity Integrated Navigation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2113-2121. DOI: 10.13203/j.whugis20230075
Citation: MAO Ning, LI An, XU Jiangning, QIN Fangjun, LI Fangneng. Observability Analysis and Robust Fusion Algorithms of INS/Gravity Integrated Navigation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2113-2121. DOI: 10.13203/j.whugis20230075

Observability Analysis and Robust Fusion Algorithms of INS/Gravity Integrated Navigation

More Information
  • Received Date: July 31, 2023
  • Available Online: July 11, 2023
  • Objectives 

    Inertial navigation system (INS)/gravity integrated navigation is an important research direction for autonomous navigation of underwater vehicles, and it is also an important part of the construction of underwater positioning, navigation and timing (PNT) system. To satisfy the needs of underwater vehicles for long endurance, high accuracy and high stealth navigation and positioning, an INS/gravity matching navigation algorithm based on the adaptive robust Sandia inertial terrain-aided navigation(SITAN) algorithm was proposed.

    Methods 

    The mathematical model of the INS/gravity matching navigation system is first developed, then the observable combined states are analyzed and the state variables that can be used in the SITAN algorithm are investigated. Finally, a new compensation factor is designed by comparing the difference between recursive and calculated values of the innovation covariance matrix in the filtering process, and an adaptive robust SITAN algorithm is proposed.

    Results 

    Three different sea areas are selected for the long-endurance simulation test. The results show that traditional SITAN algorithm cannot accomplish stable matching navigation at long navigation time, and compared with the SITAN algorithm based on Sage-Husa adaptive filtering, the proposed improved algorithm has an average increase of 15.2% and 41.4% in the mean value and standard deviation of position errors.

    Conclusions 

    By adding a new compensation factor, the adaptive robust SITAN algorithm can adjust the measurement noise covariance and filter gain at the same time, which enhances the robust adaptive capability of the system while improving the positioning accuracy. Moreover, this method does not need to introduce external auxiliary information, which is of great significance to the long-term autonomous navigation of underwater vehicles.

  • [1]
    郑伟, 李钊伟, 吴凡. 天海一体化水下重力辅助导航研究进展[J]. 国防科技大学学报, 2020, 42(3): 39-49.

    Zheng Wei, Li Zhaowei, Wu Fan. Research Progress of the Underwater Gravity-Aided Navigation Based on the Information of Aerospace-Marine Integration[J]. Journal of National University of Defense Technology, 2020, 42(3): 39-49.
    [2]
    Yang Y. Resilient PNT Concept Frame[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3): 1 - 7.
    [3]
    卞鸿巍, 许江宁, 何泓洋, 等. 国家综合PNT体系弹性概念[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1265-1272.

    Bian Hongwei, Xu Jiangning, He Hongyang, et al. The Concept of Resilience of National Comprehensive PNT System[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1265-1272.
    [4]
    黄谟涛, 邓凯亮, 欧阳永忠, 等. 海空重力测量及应用技术研究若干进展[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1635-1650.

    Huang Motao, Deng Kailiang, Ouyang Yongzhong, et al. Development and Study in Marine and Airborne Gravimetry and Its Application[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1635-1650.
    [5]
    毛宁, 李安, 许江宁, 等. 一种基于地轴投影的二维重力匹配方法[J]. 中国惯性技术学报, 2022, 30(6): 783-790.

    Mao Ning, Li An, Xu Jiangning, et al. A Two-Dimensional Gravity Map Matching Method Based on the Earth’s Axis Projection[J].Journal of Chinese Inertial Technology, 2022, 30(6): 783-790.
    [6]
    王傲明, 李姗姗, 李新星, 等. 基于自适应并行扩展卡尔曼滤波的SITAN匹配算法[J]. 中国惯性技术学报, 2022, 30(1): 81-88.

    Wang Aoming, Li Shanshan, Li Xinxing, et al. SITAN Matching Algorithm Based on Adaptive Parallel Extended Kalman Filter[J]. Journal of Chinese Inertial Technology, 2022, 30(1): 81-88.
    [7]
    Wang B, Zhu J W, Ma Z X, et al. Improved Particle Filter-Based Matching Method with Gravity Sample Vector for Underwater Gravity-Aided Navigation[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 5206-5216.
    [8]
    Han Y R, Wang B, Deng Z H, et al. A Combined Matching Algorithm for Underwater Gravity-Aided Navigation[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 233-241.
    [9]
    Zou J S, Cai T J. Improved Particle Swarm Optimization Screening Iterative Algorithm in Gravity Matching Navigation[J]. IEEE Sensors Journal, 2022, 22(21): 20866-20876.
    [10]
    Gao S P, Cai T J, Fang K. Gravity-Matching Algorithm Based on K-Nearest Neighbor[J]. Sensors, 2022, 22(12): 4454.
    [11]
    Zhao S W, Xiao X, Wang Y, et al. An Improved Particle Filter Based on Gravity Measurement Feature in Gravity-Aided Inertial Navigation System[J]. IEEE Sensors Journal, 2023, 23(2): 1423-1435.
    [12]
    黄炎, 李姗姗, 谭勖立, 等. 基于地球重力场模型的重力匹配数据随机线性化方法[J]. 中国惯性技术学报, 2022, 30(3): 328-335.

    Huang Yan, Li Shanshan, Tan Xuli, et al. Random Linearization Method of Gravity Matching Data Based on Earth Gravity Field Model[J]. Journal of Chinese Inertial Technology, 2022, 30(3): 328-335.
    [13]
    欧阳明达, 孙艺轩, 邝英才, 等. 应用抗差估计SITAN算法的水下重力匹配导航方法[J]. 中国惯性技术学报, 2021, 29(2): 214-220.

    Ouyang Mingda, Sun Yixuan, Kuang Yingcai, et al. Underwater Gravity Matching Navigation Method of SITAN Algorithm with Robust Estimation[J]. Journal of Chinese Inertial Technology, 2021, 29(2): 214-220.
    [14]
    Han Y R, Wang B, Deng Z H, et al. A Matching Algorithm Based on the Nonlinear Filter and Similarity Transformation for Gravity-Aided Underwater Navigation[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2): 646-654.
    [15]
    Wang Z, Huang Y L, Wang M S, et al. A Computationally Efficient Outlier-Robust Cubature Kalman Filter for Underwater Gravity Matching Navigation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 8500418.
    [16]
    严恭敏, 邓瑀. 传统组合导航中的实用Kalman滤波技术评述[J]. 导航定位与授时, 2020, 7(2): 50-64.

    Yan Gongmin, Deng Yu. Review on Practical Kalman Filtering Techniques in Traditional Integrated Navigation System[J]. Navigation Positioning and Timing, 2020, 7(2): 50-64.
    [17]
    Wang B, Yu L, Deng Z H, et al. A Particle Filter-Based Matching Algorithm with Gravity Sample Vector for Underwater Gravity Aided Navigation[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1399-1408.
    [18]
    Shen K, Wang M L, Fu M Y, et al. Observability Analysis and Adaptive Information Fusion for Integrated Navigation of Unmanned Ground Vehicles[J]. IEEE Transactions on Industrial Electronics, 2020, 67(9): 7659-7668.
    [19]
    Chen P, Mao X J, Han J F, et al. Observability Analysis for Orbit Determination Using Spaceborne Gradiometer[J]. Journal of Aerospace Engineering, 2023, 36(2): 04022122.
    [20]
    Goshen-Meskin D, Bar-Itzhack I Y. Observability Analysis of Piece-Wise Constant Systems. I. Theory[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4): 1056-1067.
    [21]
    Sandwell D T, Müller R D, Smith W H F, et al. New Global Marine Gravity Model from CryoSat-2 and Jason-1 Reveals Buried Tectonic Structure[J]. Science, 2014, 346(6205): 65-67.
  • Related Articles

    [1]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [2]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [6]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [7]ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401.
    [10]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 肖斌宸,叶飞,叶险峰,曾翔强. 电离层和地形复杂区域北斗/GNSS实时PPP性能及大气分析. 数据与计算发展前沿(中英文). 2025(01): 108-118 .
    2. 侯诚,史俊波,苟劲松,郭际明,邹进贵. 多路径误差对BDS-3变形监测精度的影响. 大地测量与地球动力学. 2024(02): 128-133 .
    3. 邓陈喜,姜维,王剑,蔡伯根. 基于北斗3号PPP-B2b信号的实时精密单点定位方法研究. 铁道学报. 2024(02): 63-73 .
    4. 于合理,孙晓东,贾赞杰,武智佳,代桃高. 限制环境下的GNSS精密授时方法研究综述. 海洋测绘. 2024(02): 46-50 .
    5. 许扬胤,任夏,明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析. 全球定位系统. 2024(03): 10-19 .
    6. 肖恭伟,卞逸驰,何在民,广伟,尹翔飞,张润芝. 北斗三号PPP-B2b差分码偏差对UPPP解算的影响. 西安邮电大学学报. 2024(02): 1-10 .
    7. 宋伟伟,宋啟晟,何倩倩,龚晓鹏,辜声峰. 高精度电离层产品增强PPP-B2b定位性能分析. 武汉大学学报(信息科学版). 2024(09): 1517-1526 .
    8. 索世恒,韩昆,张永峰. 伽利略高精度服务产品与其全球定位性能评估. 地理空间信息. 2024(11): 100-104+121 .
    9. 孙爽,王敏,刘长建,孟欣,季锐. PPP-B2b服务钟差常数偏差特性及对定位的影响分析. 测绘科学. 2023(01): 8-15 .
    10. 郭文飞,朱萌萌,辜声峰,左鸿铭,陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法. 武汉大学学报(信息科学版). 2023(07): 1126-1133 .
    11. 唐守普,吴文坛,夏振营,史进志,赵婉清,莫雁寒. 北斗三号PPP-B2b独立定位分析与应用. 河北省科学院学报. 2023(03): 61-69 .
    12. 赵淑洁,赵当丽,黄媛媛,纪元法. 基于PPP-B2b改正产品的北斗实时精密星历精度分析. 时间频率学报. 2023(02): 141-149 .
    13. 张润芝,何在民,马红皎,武建锋,广伟,肖恭伟. 北斗三号PPP-B2b信号跟踪环路的极点分布法设计. 时间频率学报. 2023(02): 161-169 .
    14. 姚夏,李志敏,吴如楠,毛飞宇,龚晓鹏. 北斗三号PPP-B2b信号时间同步性能分析. 导航定位学报. 2023(04): 84-89 .
    15. 史俊波,董新莹,欧阳晨皓,彭文杰,姚宜斌. 基于北斗三号PPP服务的快速静态和低动态定位性能分析. 大地测量与地球动力学. 2023(10): 997-1002 .
    16. 韩晓红,孙保琪,张喆,周红源,杨海彦,赵当丽,杨旭海. 基于北斗三号PPP-B2b轨道的实时精密共视时间传递. 导航定位与授时. 2023(04): 103-111 .
    17. 肖鹏,孙付平,张伦东,肖凯,商向永. 北斗三号PPP-B2b服务实时动态定位性能分析. 导航定位学报. 2023(05): 21-28 .
    18. 刘杨,曾安敏,郑翠娥,江鹏,刘焱雄. 广播式远程精密水下导航定位技术. 哈尔滨工程大学学报. 2023(11): 1987-1995 .
    19. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .
    20. 赵泉涌,潘树国,缪巍巍,沈超,高旺,赵庆. PPP-B2b常数偏差实时改正后的多频单历元定位. 测绘科学. 2023(11): 61-68 .
    21. 彭松,刘建坤,张云龙,常丹,孙兆辉. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析. 科学技术与工程. 2022(33): 14898-14906 .
    22. 余德荧,金际航,刘一,边少锋. 基于北斗三号PPP-B2b信号的海上精密定位试验分析. 海洋测绘. 2022(06): 51-55+64 .

    Other cited types(9)

Catalog

    Article views (447) PDF downloads (85) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return