ZHANG Xiaohong, ZHANG Yuantai, ZHU Feng. Factor Graph Optimization for Urban Environment GNSS Positioning and Robust Performance Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1050-1057. DOI: 10.13203/j.whugis20230203
Citation: ZHANG Xiaohong, ZHANG Yuantai, ZHU Feng. Factor Graph Optimization for Urban Environment GNSS Positioning and Robust Performance Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1050-1057. DOI: 10.13203/j.whugis20230203

Factor Graph Optimization for Urban Environment GNSS Positioning and Robust Performance Analysis

More Information
  • Received Date: June 03, 2023
  • Available Online: July 07, 2023
  • Published Date: July 04, 2023
  •   Objectives  BeiDou satellite navigation system (BeiDou)/global navigation satellite system(GNSS) can provide continuous and reliable high-precision navigation and positioning service in open-sky, yet in urban environment, suffering from outliers and cycle slips caused by severe multi-path and non-line-of-sight signals, the navigation and positioning capability remains inadequate. Compared with the extended Kalman filter (EKF), factor graph optimization (FGO) can make full use of historical measurements and restrain the influence of anomalous data through constraints and redundant measurements inside the window.
      Methods  A GNSS positioning model based on sliding-window FGO is constructed, adopting posteriori residuals test as outlier detection method, and analysis of robust performance between EKF and FGO is presented in terms of minimum detectable bias, correct detection rate and positioning accuracy.
      Results  The result of urban environment experiment shows that the minimum detectable bias is reduced by 11.92%-32.56%, the correct detection rate is improved by 3.84%-10.47%, and the GNSS positioning accuracy is improved by 11.29%-25.99%.
      Conclusions  Overall, for Application of GNSS navigation and positioning in urban environment, FGO has better robustness and positioning accuracy, could replace EKF models based on single epoch observations.
  • [1]
    Pan L, Zhang X, Liu J, et al. Performance Evaluation of Single-frequency Precise Point Positioning with GPS, GLONASS, BeiDou and Galileo[J]. The Journal of Navigation, 2017, 70(3): 465-482. doi: 10.1017/S0373463316000771
    [2]
    耿江辉, 常华, 郭将, 等. 面向城市复杂环境的3种多频多系统GNSS单点高精度定位方法及性能分析[J]. 测绘学报, 2020, 49(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202001001.htm

    Geng Jianghui, Chang Hua, Guo Jiang, et al. Three Multi-frequency and Multi-system GNSS High-Precision Point Positioning Methods and Their Performance in Complex Urban Environment[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1): 1-13 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202001001.htm
    [3]
    张小红, 陶贤露, 王颖喆, 等. 城市场景智能手机GNSS/MEMS融合车载高精度定位[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1740-1749. doi: 10.13203/j.whugis20220611

    Zhang Xiaohong, Tao Xianlu, Wang Yingzhe, et al. MEMS-Enhanced Smartphone GNSS High-Precision Positioning for Vehicular Navigation in Urban Conditions[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1740-1749 doi: 10.13203/j.whugis20220611
    [4]
    Takasu T, Yasuda A. Development of the Low-Cost RTK-GPS Receiver with an Open Source Program Package RTKLIB[C]//International Symposium on GPS/GNSS, International Convention Center Jeju Korea Seogwiposi, Korea, 2009.
    [5]
    Watson R M, Gross J N. Robust Navigation in GNSS Degraded Environment Using Graph Optimization[C]//The 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, Oregon, USA, 2017.
    [6]
    Kschischang F R, Frey B J, Loeliger H A. Factor Graphs and the Sum-Product Algorithm[J]. IEEE Transactions on Information Theory, 2001, 47(2): 498-519. doi: 10.1109/18.910572
    [7]
    Dellaert F, Kaess M. Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing[J]. The International Journal of Robotics Research, 2006, 25(12): 1181-1203. doi: 10.1177/0278364906072768
    [8]
    王金科, 左星星, 赵祥瑞, 等. 多源融合SLAM的现状与挑战[J]. 中国图象图形学报, 2022, 27(2): 368-389. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202202005.htm

    Wang Jinke, Zuo Xingxing, Zhao Xiangrui, et al. Review of Multi-source Fusion SLAM: Current Status and Challenges[J]. Journal of Image and Graphics, 2022, 27(2): 368-389 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202202005.htm
    [9]
    Suzuki T. First Place Award Winner of the Smartphone Decimeter Challenge: Global Optimization of Position and Velocity by Factor Graph Optimization[C]//The 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), LouisSt., Missouri, 2021.
    [10]
    Suzuki T. 1st Place Winner of the Smartphone Decimeter Challenge: Two-Step Optimization of Velocity and Position Using Smartphone's Carrier Phase Observations[C]//The 35th International Technical Meeting of the Satellite Division of the Institute of Navigation, Denver, USA, 2022.
    [11]
    Watson R M, Gross J N. Evaluation of Kinematic Precise Point Positioning Convergence with an Incremental Graph Optimizer[C]//2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 2018.
    [12]
    Wen W, Hsu L T. Towards Robust GNSS Positioning and Real-time Kinematic Using Factor Graph Optimization[C]//2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China, 2021.
    [13]
    Gao H, Li H, Huo H, et al. Robust GNSS Real-Time Kinematic with Ambiguity Resolution in Factor Graph Optimization[C]//2022 International Technical Meeting of the Institute of Navigation, Long Beach, California, 2022.
    [14]
    徐浪, 陈晓东, 黄攀. 基于因子图优化的GNSS定位算法研究[C]//第十三届中国卫星导航年会: 自主导航与智能运行, 中国北京, 2022.

    Xu Lang, Chen Xiaodong, Huang Pan. An Improved GNSS Positioning Algorithm Based on Factor Graph Optimization[C]//The 13rd China Satellite Navigation Conference: Autonomous Navigation and Intelligent Operation, Beijing, China, 2022
    [15]
    Bai X, Wen W, Hsu L T. Time-Correlated Window-Carrier-Phase-Aided GNSS Positioning Using Factor Graph Optimization for Urban Positioning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3370-3384. doi: 10.1109/TAES.2022.3149730
    [16]
    Jiang Y, Gao Y, Ding W, et al. GNSS Precise Positioning for Smartphones Based on the Integration of Factor Graph Optimization and Solution Separation[J]. Measurement, 2022, 203: 111924. doi: 10.1016/j.measurement.2022.111924
    [17]
    Sibley G, Matthies L, Sukhatme G. Sliding Window Filter with Application to Planetary Landing[J]. Journal of Field Robotics, 2010, 27(5): 587-608. doi: 10.1002/rob.20360
  • Related Articles

    [1]JIN Biao, CHEN Shanshan, LI Zhulian, LI Yuqiang, LI Zixiao. SBAS GEO Satellite User Range Error and Position Augmentation Research[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1166-1175. DOI: 10.13203/j.whugis20210091
    [2]ZHANG Qin, WANG Le, LAI Wen, WANG Qining, LONG Zhengxin. Simulation and Comprehensive Performance Evaluation of the Integrated Space-Ground System for Low Earth Orbit-Enhanced BeiDou Navigation Satellite System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1863-1875. DOI: 10.13203/j.whugis20230342
    [3]BU Jinwei, ZUO Xiaoqing, JIN Lixin, CHANG Jun. Positioning Performance Evaluation of BDS/QZSS and Its Combined Systems in China, Japan and Their Peripheral Areas[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 574-585, 611. DOI: 10.13203/j.whugis20180228
    [4]WANG Lei, CHEN Ruizhi, LI Deren, YU Baoguo, WU Cailun. Quality Assessment of the LEO Navigation Augmentation Signals from Luojia-1A Satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191-2196. DOI: 10.13203/j.whugis20180413
    [5]ZHANG Lihua, WEN Lianfa, JIA Shuaidong. Indices and Methods for Evaluating Quantificationally the Quality of Simplification of a Depth-Contour in Nautical Chart[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 496-501, 508. DOI: 10.13203/j.whugis20160113
    [6]LI Zuohu, HAO Jinming, LI Jianwen, ZHANG Chengjun. Analysis on QZSS Augmentation on Area Performance of GPS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 17-20.
    [7]LIU Xin, YIN Qian, GUO Ping. A Study of Software Fault Tolerance System Evaluation Strategy[J]. Geomatics and Information Science of Wuhan University, 2008, 33(10): 1018-1021.
    [8]CHEN Nan. Performance Evaluation of the Structure of GNSS Navigation Message[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 512-515.
    [9]ZHANG Yajie, TANG Xu, ZHU Guorui. Improvement on Evaluation Model for Base Land Price[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 551-554.
    [10]TANG Xu, HU Shiyuan, LIU Yaolin. Design and Integration of Repository in Land Evaluation System[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 433-437. DOI: 10.13203/j.whugis2004.05.013
  • Cited by

    Periodical cited type(22)

    1. 张奋,贾小林,阮仁桂,朱永兴,宗文鹏. QZSS区域卫星导航系统性能分析. 测绘与空间地理信息. 2024(10): 11-15 .
    2. 金彪,李锐,王盾,刘磊,原晋栩,李子潇. 星基增强系统单频服务性能评估方法. 北京航空航天大学学报. 2024(10): 3062-3073 .
    3. 寇瑞雄,杨树文. 基于广义延拓逼近法的QZSS卫星钟差内插精度分析. 全球定位系统. 2022(04): 73-78 .
    4. 金彪,魏巍,陈姗姗,李东俊. SBAS星历改正数及UDRE参数生成算法分析. 武汉大学学报(信息科学版). 2021(01): 111-117 .
    5. 朱轶群,吴继忠. QZSS L6E增强服务改正数支持的PPP性能评估. 测绘科学. 2021(02): 34-41 .
    6. 倪育德,王子成. 地球静止轨道卫星数对广域增强系统性能的影响. 科学技术与工程. 2021(16): 6737-6745 .
    7. 陈姗姗,金彪,赵立谦,夏川茹,王雷雷. SBAS电文时序动态编排算法. 北京航空航天大学学报. 2021(10): 1996-2005 .
    8. 糜晓龙,袁运斌,张宝成. 多频多模GNSS接收机差分相位偏差的短期时变特性. 测绘学报. 2021(10): 1290-1297 .
    9. 董洲洋,朱兆涵,徐健. 全球导航卫星系统时间精度分析. 测绘与空间地理信息. 2021(11): 17-19 .
    10. 寇瑞雄,杨树文. 准天顶卫星系统广播星历精度评定和拟合精度分析. 全球定位系统. 2021(05): 39-47 .
    11. 布金伟,左小清,金立新,常军. BDS/QZSS及其组合系统在中国和日本及周边地区的定位性能评估. 武汉大学学报(信息科学版). 2020(04): 574-585+611 .
    12. 郝茂森,贾小林,曾添,焦文海. QZSS亚米级增强服务和MSAS增强定位性能评估. 导航定位与授时. 2020(05): 91-99 .
    13. 陈健,Yue Dongjie,Zhu Shaolin,Liu Zhiqiang,Dai Jianbiao. Comparison of availability and reliability among different combined-GNSS/RNSS precise point positioning. High Technology Letters. 2020(03): 235-242 .
    14. 赵镇,陈刚,胡志刚. 星基增强系统L1频段信息服务性能分析. 中国地震. 2020(04): 912-923 .
    15. 喻思琪,张小红,郭斐,李昕,潘林,马福建. 卫星导航进近技术进展. 航空学报. 2019(03): 16-37 .
    16. 张玉英,谭荣建,布金伟,李国柱,张东升. BDS+QZSS双系统组合PPP性能评估. 城市勘测. 2019(02): 107-113 .
    17. 何巧,陈伟康. GPS/QZSS双系统组合定位性能分析. 北京测绘. 2019(05): 541-545 .
    18. 江永生. QZSS增强信号对GPS定位增强效果的分析. 北京测绘. 2019(08): 969-973 .
    19. 徐炜,贾雪,王涛. QZSS/IRNSS对BDS在中国定位性能增强的评估. 测绘工程. 2018(01): 31-36 .
    20. 张文峰. 星基增强信号的GPS实时精密单点定位算法. 测绘科学. 2018(08): 62-67 .
    21. 毛琪,麻智超,卢满宏,王松. GAGAN系统在北京地区定位性能测试与评估. 遥测遥控. 2017(04): 53-57 .
    22. 张琳. QZSS导航系统在亚太地区的初步性能评估. 中国惯性技术学报. 2017(05): 618-623 .

    Other cited types(17)

Catalog

    Article views (1431) PDF downloads (410) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return