XU Wenbin, LUO Xingjun, ZHU Jianjun, WANG Jiageng, XIE Lei. Review of Volcano Deformation Monitoring and Modeling with InSAR[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1632-1642. DOI: 10.13203/j.whugis20230090
Citation: XU Wenbin, LUO Xingjun, ZHU Jianjun, WANG Jiageng, XIE Lei. Review of Volcano Deformation Monitoring and Modeling with InSAR[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1632-1642. DOI: 10.13203/j.whugis20230090

Review of Volcano Deformation Monitoring and Modeling with InSAR

More Information
  • Received Date: March 07, 2023
  • Available Online: March 16, 2023
  • Volcano deformation monitoring is one of the most widely studied research topics by using interferometric synthetic aperture radar (InSAR). In the new open and big SAR data era, the development of data processing methods, and interdisciplinary integration have pushed volcanic study into a new stage. This paper reviews the studies of volcano monitoring and parameter inversion based on InSAR. First, we introduce the principle of InSAR, the advanced InSAR time series methods, and the main error sources. Then, we summarize the commonly used classical analytical and numerical models in volcanic deformation modeling. We select several cases to introduce the specific InSAR applications in studying volcanic tectonic dynamic mechanisms including magma transfer, eruption, degassing and hydrothermal activity. Finally, we summarize the current status of volcanic deformation monitoring in China and the future advances of InSAR volcano geodesy.

  • [1]
    朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201710054.htm

    Zhu Jianjun, Li Zhiwei, Hu Jun. Research Progress and Methods of InSAR for Deformation Monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201710054.htm
    [2]
    Massonnet D, Briole P, Arnaud A. Deflation of Mount Etna Monitored by Spaceborne Radar Interferometry[J]. Nature, 1995, 375(6532): 567-570. doi: 10.1038/375567a0
    [3]
    Gabriel A K, Goldstein R M, Zebker H A. Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry[J]. Journal of Geophysical Research, 1989, 94(B7): 9183. doi: 10.1029/JB094iB07p09183
    [4]
    Hooper A, Zebker H, Segall P, et al. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers[J]. Geophysical Research Letters, 2004, 31(23): 1-5.
    [5]
    Costantini M, Falco S, Malvarosa F, et al. A New Method for Identification and Analysis of Persistent Scatterers in Series of SAR Images[C]//2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2008), Boston, USA, 2009.
    [6]
    Kampes B M. Radar Interferometry: Persistent Scatterer Technique[M]. Dordrecht, the Netherlands: Springer, 2006.
    [7]
    Liu G, Jia H, Zhang R, et al. Ultrashort-Baseline Persistent Scatterer Radar Interferometry for Subsidence Detection[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, Ⅰ-7: 41-48.
    [8]
    Werner C, Wegmuller U, Strozzi T, et al. Interferometric Point Target Analysis for Deformation Mapping[C]//2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2003), Toulouse, France, 2004.
    [9]
    Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383. doi: 10.1109/TGRS.2002.803792
    [10]
    Mora O, Mallorqui J J, Broquetas A. Linear and Nonlinear Terrain Deformation Maps from a Reduced Set of Interferometric SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2243-2253. doi: 10.1109/TGRS.2003.814657
    [11]
    Sowter A, Bateson L, Strange P, et al. DInSAR Estimation of Land Motion Using Intermittent Coherence with Application to the South Derbyshire and Leicestershire Coalfields[J]. Remote Sensing Letters, 2013, 4(10): 979-987. doi: 10.1080/2150704X.2013.823673
    [12]
    Zhang L, Ding X, Lu Z. Deformation Rate Estimation on Changing Landscapes Using Temporarily Coherent Point InSAR[C]//Fringe Conference Proceedings, Boston, USA, 2012.
    [13]
    Ferretti A, Fumagalli A, Novali F, et al. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3460-3470. doi: 10.1109/TGRS.2011.2124465
    [14]
    Fornaro G, Verde S, Reale D, et al. CAESAR: An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline–Multitemporal Interferometric SAR Processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2050-2065. doi: 10.1109/TGRS.2014.2352853
    [15]
    Wang Y, Zhu X. Robust Estimators for Multipass SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 54(2): 968-980.
    [16]
    Cao N, Lee H, Jung H C. A Phase-decomposition-based PSInSAR Processing Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1074-1090. doi: 10.1109/TGRS.2015.2473818
    [17]
    Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20. doi: 10.1109/36.898661
    [18]
    Lee C W, Lu Z, Jung H S. Simulation of Time-series Surface Deformation to Validate a Multi-interferogram InSAR Processing Technique[J]. International Journal of Remote Sensing, 2012, 33(22): 7075-7087. doi: 10.1080/01431161.2012.700137
    [19]
    Jung J, Kim D J, Park S E. Correction of Atmospheric Phase Screen in Time Series InSAR Using WRF Model for Monitoring Volcanic Activities[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2678-2689. doi: 10.1109/TGRS.2013.2264532
    [20]
    Remy D, Chen Y, Froger J L, et al. Revised Interpretation of Recent InSAR Signals Observed at Llaima Volcano (Chile)[J]. Geophysical Research Letters, 2015, 42(10): 3870-3879. doi: 10.1002/2015GL063872
    [21]
    Stephens K J, Wauthier C, Bussard R C, et al. Assessment of Mitigation Strategies for Tropospheric Phase Contributions to InSAR Time-series Datasets over Two Nicaraguan Volcanoes[J]. Remote Sensing, 2020, 12(5): 782. doi: 10.3390/rs12050782
    [22]
    Xu W B, Jónsson S, Ruch J, et al. The 2015 Wolf Volcano (Galápagos) Eruption Studied Using Sentinel-1 and ALOS-2 Data[J]. Geophysical Research Letters, 2016, 43(18): 9573-9580. doi: 10.1002/2016GL069820
    [23]
    Xu W B, Xie L, Aoki Y, et al. Volcano-wide Deformation After the 2017 Erta Ale Dike Intrusion, Ethiopia, Observed with Radar Interferometry[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): 1-11.
    [24]
    Xu W B, Jónsson S. The 2007-8 Volcanic Eruption on Jebel at Tair Island (Red Sea) Observed by Satellite Radar and Optical Images[J]. Bulletin of Volcanology, 2014, 76(2): 1-14.
    [25]
    Fattahi H, Amelung F. DEM Error Correction in InSAR Time Series[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4249-4259. doi: 10.1109/TGRS.2012.2227761
    [26]
    Zhan Y, Le Mével H, Roman D C, et al. Modeling Deformation, Seismicity, and Thermal Anomalies Driven by Degassing During the 2005-2006 Pre-eruptive Unrest of Augustine Volcano, Alaska[J]. Earth and Planetary Science Letters, 2022, 585: 117524. doi: 10.1016/j.epsl.2022.117524
    [27]
    Mogi K. Relations Between the Eruptions of Various Volcanoes and the Deformation of the Ground Surfaces[J]. Wauthier, 1958, 64: 11-23.
    [28]
    Yang X M, Davis P M, Dieterich J H. Deformation from Inflation of a Dipping Finite Prolate Spheroid in an Elastic Half-space as a Model for Volcanic Stressing[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B5): 4249-4257. doi: 10.1029/JB093iB05p04249
    [29]
    Okada Y. Surface Deformation Due to Shear and Tensile Faults in a Half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154. doi: 10.1785/BSSA0750041135
    [30]
    Fialko Y, Khazan Y, Simons M. Deformation Due to a Pressurized Horizontal Circular Crack in an Elastic Half-space, with Applications to Volcano Geodesy[J]. Geophysical Journal International, 2001, 146(1): 181-190. doi: 10.1046/j.1365-246X.2001.00452.x
    [31]
    Kyle R. A, Ingrid A. J, Matthew R. P, et al. Magma Reservoir Failure and the Onset of Caldera Collapse at Kilauea Volcano in 2018[J]. Science, 2019, 366(6470): eaaz1822. doi: 10.1126/science.aaz1822
    [32]
    Jónsson S, Zebker H, Cervelli P, et al. A Shallow-dipping Dike Fed the 1995 Flank Eruption at Fernandina Volcano, Galápagos, Observed by Satellite Radar Interferometry[J]. Geophysical Research Letters, 1999, 26(8): 1077-1080. doi: 10.1029/1999GL900108
    [33]
    Chadwick W W, Jónsson S, Geist D J, et al. The May 2005 Eruption of Fernandina Volcano, Galápagos: The First Circumferential Dike Intrusion Observed by GPS and InSAR[J]. Bulletin of Volcanology, 2011, 73(6): 679-697. doi: 10.1007/s00445-010-0433-0
    [34]
    Davis P M. Surface Deformation Due to Inflation of an Arbitrarily Oriented Triaxial Ellipsoidal Cavity in an Elastic Half-space, with Reference to Kilauea Volcano, Hawaii[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B7): 7429-7438. doi: 10.1029/JB091iB07p07429
    [35]
    Trasatti E, Giunchi C, Agostinetti N P. Numerical Inversion of Deformation Caused by Pressure Sources: Application to Mount Etna (Italy)[J]. Geophysical Journal International, 2008, 172(2): 873-884. doi: 10.1111/j.1365-246X.2007.03677.x
    [36]
    Ronchin E, Masterlark T, Molist J M, et al. Solid Modeling Techniques to Build 3D Finite Element Models of Volcanic Systems: An Example from the Rabaul Caldera System, Papua New Guinea[J]. Computers & Geosciences, 2013, 52: 325-333.
    [37]
    Charco M, Galán del Sastre P. Efficient Inversion of Three-dimensional Finite Element Models of Volcano Deformation[J]. Geophysical Journal International, 2014, 196(3): 1441-1454. doi: 10.1093/gji/ggt490
    [38]
    Hickey J, Gottsmann J, Mothes P. Estimating volcanic deformation source parameters with a finite element inversion: The 2001-2002 unrest at Cotopaxi volcano, Ecuador[J]. JGR Solid Earth, 2015, 120(3): B02206.
    [39]
    Wallace C S, Schaefer L N, Villeneuve M C. Material Properties and Triggering Mechanisms of an Andesitic Lava Dome Collapse at Shiveluch Volcano, Kamchatka, Russia, Revealed Using the Finite Element Method[J]. Rock Mechanics and Rock Engineering, 2022, 55(5): 2711-2728. doi: 10.1007/s00603-021-02513-z
    [40]
    Wang X W, Aoki Y. Posteruptive Thermoelastic Deflation of Intruded Magma in Usu Volcano, Japan, 1992-2017[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 335-357. doi: 10.1029/2018JB016729
    [41]
    Shreve T, Grandin R, Boichu M. Reservoir Depressurization Driven by Passive Gas Emissions at Ambrym Volcano[J]. Earth and Planetary Science Letters, 2022, 584: 1-36.
    [42]
    D'Auria L, Pepe S, Castaldo R, et al. Magma Injection Beneath the Urban Area of Naples: A New Mechanism for the 2012-2013 Volcanic Unrest at Campi Flegrei Caldera[J]. Scientific Reports, 2015, 5: 13100. doi: 10.1038/srep13100
    [43]
    Flóvenz Ó G, Wang R J, Hersir G P, et al. Cyclical Geothermal Unrest as a Precursor to Iceland's 2021 Fagradalsfjall Eruption[J]. Nature Geoscience, 2022, 15(5): 397-404. doi: 10.1038/s41561-022-00930-5
    [44]
    Pritchard M E, Jay J A, Aron F, et al. Subsidence at Southern Andes Volcanoes Induced by the 2010 Maule, Chile Earthquake[J]. Nature Geoscience, 2013, 6(8): 632-636. doi: 10.1038/ngeo1855
    [45]
    Smittarello D, Smets B, Barrière J, et al. Precursor-free Eruption Triggered by Edifice Rupture at Nyiragongo Volcano[J]. Nature, 2022, 609(7925): 83-88. doi: 10.1038/s41586-022-05047-8
    [46]
    Pallister J S, McCausland W A, Jónsson S, et al. Broad Accommodation of Rift-related Extension Recorded by Dyke Intrusion in Saudi Arabia[J]. Nature Geoscience, 2010, 3(10): 705-712. doi: 10.1038/ngeo966
    [47]
    Sigmundsson F, Hreinsdóttir S, Hooper A, et al. Intrusion Triggering of the 2010 Eyjafjallajökull Explosive Eruption[J]. Nature, 2010, 468(7322): 426-430. doi: 10.1038/nature09558
    [48]
    Sigmundsson F, Hooper A, Hreinsdóttir S, et al. Segmented Lateral Dyke Growth in a Rifting Event at Bárðarbunga Volcanic System, Iceland[J]. Nature, 2015, 517(7533): 191-195. doi: 10.1038/nature14111
    [49]
    Ruch J, Wang T, Xu W B, et al. Oblique Rift Opening Revealed by Reoccurring Magma Injection in Central Iceland[J]. Nature Communications, 2016, 7: 12352. doi: 10.1038/ncomms12352
    [50]
    Jónsson S. Stress Interaction Between Magma Accumulation and Trapdoor Faulting on Sierra Negra Volcano, Galápagos[J]. Tectonophysics, 2009, 471(1/2): 36-44.
    [51]
    Holohan E P, Schöpfer M P J, Walsh J J. Mechanical and Geometric Controls on the Structural Evolution of Pit Crater and Caldera Subsidence[J]. Journal of Geophysical Research, 2011, 116(B7): B07202.
    [52]
    Holohan E P, Walter T R, Schöpfer M P J, et al. Origins of Oblique-slip Faulting During Caldera Subsidence[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(4): 1778-1794. doi: 10.1002/jgrb.50057
    [53]
    Moore I, Kokelaar P. Tectonically Controlled Piecemeal Caldera Collapse: A Case Study of Glencoe Volcano, Scotland[J]. Bulletin of the Geological Society of America, 1998, 110(11): 1448-1466. doi: 10.1130/0016-7606(1998)110<1448:TCPCCA>2.3.CO;2
    [54]
    Bell A F, La Femina P C, Ruiz M, et al. Caldera Resurgence During the 2018 Eruption of Sierra Negra Volcano, Galápagos Islands[J]. Nature Communications, 2021, 12: 1397. doi: 10.1038/s41467-021-21596-4
    [55]
    Bathke H, Nikkhoo M, Holohan E P, et al. Insights into the 3D Architecture of an Active Caldera Ring-fault at Tendürek Volcano Through Modeling of Geodetic Data[J]. Earth and Planetary Science Letters, 2015, 422: 157-168. doi: 10.1016/j.epsl.2015.03.041
    [56]
    Poland M P, Miklius A, Jeff Sutton A, et al. A Mantle-driven Surge in Magma Supply to Kīlauea Volcano During 2003—2007[J]. Nature Geoscience, 2012, 5(4): 295-300. doi: 10.1038/ngeo1426
    [57]
    Xu W B, Ruch J, Jónsson S. Birth of Two Volcanic Islands in the Southern Red Sea[J]. Nature Communications, 2015, 6: 7104. doi: 10.1038/ncomms8104
    [58]
    Amelung F, Yun S H, Walter T R, et al. Stress Control of Deep Rift Intrusion at Mauna Loa Volcano, Hawaii[J]. Science, 2007, 316(5827): 1026-1030. doi: 10.1126/science.1140035
    [59]
    Ofeigsson B G, Hooper A, Sigmundsson F, et al. Deep Magma Storage at Hekla Volcano, Iceland, Revealed by InSAR Time Series Analysis[J]. Journal of Geophysical Research, 2011, 116(B5): B05401.
    [60]
    Samsonov S, d'Oreye N. Multidimensional Time-series Analysis of Ground Deformation from Multiple InSAR Data Sets Applied to Virunga Volcanic Province[J]. Geophysical Journal International, 2012, 191(3): 1095-1108.
    [61]
    Wang X W, Aoki Y, Chen J. Surface Deformation of Asama Volcano, Japan, Detected by Time Series InSAR Combining Persistent and Distributed Scatterers, 2014—2018[J]. Earth, Planets and Space, 2019, 71(1): 1-16. doi: 10.1186/s40623-018-0980-8
    [62]
    Fernández J, Escayo J, Hu Z B, et al. Detection of Volcanic Unrest Onset in La Palma, Canary Islands, Evolution and Implications[J]. Scientific Reports, 2021, 11: 2540. doi: 10.1038/s41598-021-82292-3
    [63]
    Polcari M, Borgstrom S, Del Gaudio C, et al. Thirty Years of Volcano Geodesy from Space at Campi Flegrei Caldera (Italy)[J]. Scientific Data, 2022, 9: 728. doi: 10.1038/s41597-022-01849-7
    [64]
    Gregg P M, Yan Z, Amelung F, et al. Forecasting Mechanical Failure and the 26 June 2018 Eruption of Sierra Negra Volcano, Galápagos, Ecuador[J]. Science Advances, 2022, 8(22): eabm4261. doi: 10.1126/sciadv.abm4261
    [65]
    Hamling I J, Wright T J, Hreinsdóttir S, et al. A Snapshot of New Zealand's Dynamic Deformation Field from Envisat InSAR and GNSS Observations Between 2003 and 2011[J]. Geophysical Research Letters, 2022, 49(2): 1-10.
    [66]
    Anantrasirichai N, Biggs J, Albino F, et al. The Application of Convolutional Neural Networks to Detect Slow, Sustained Deformation in InSAR Time Series[J]. Geophysical Research Letters, 2019, 46(21): 11850-11858. doi: 10.1029/2019GL084993
    [67]
    Zhao Y, Feng G, Wang Y, et al. A New Algorithm for Intelligent Detection of Geohazards Incorporating Attention Mechanism[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113: 102988. doi: 10.1016/j.jag.2022.102988
    [68]
    Beker T, Ansari H, Montazeri S, et al. Fine-tuning CNNS for Decreased Sensitivity to Non-volcanic Deformation Velocity Signals[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, 3: 85-92.
    [69]
    Biggs J, Anantrasirichai N, Albino F, et al. Large-scale Demonstration of Machine Learning for the Detection of Volcanic Deformation in Sentinel-1 Satellite Imagery[J]. Bulletin of Volcanology, 2022, 84(12): 1-17.
    [70]
    Bountos N I, Michail D, Papoutsis I. Learning from Synthetic InSAR with Vision Transformers: The Case of Volcanic Unrest Detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.
    [71]
    陈棋福, 艾印双, 陈赟. 长白山火山区深部结构探测的研究进展与展望[J]. 中国科学: 地球科学, 2019, 49(5): 778-795 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201905003.htm

    Chen Qifu, Ai Yinshuang, Chen Yun. Overview of Deep Structures Under the Changbaishan Volcanic Area in Northeast China[J]. Science China Earth Sciences, 2019, 49(5): 778–795 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201905003.htm
    [72]
    Pan B, Liu G M, Cheng T, et al. Development and Status of Active Volcano Monitoring in China[J]. Geological Society, 2021, 510(1): 227-252. doi: 10.1144/SP510-2020-62
    [73]
    胡亚轩, 王庆良, 崔笃信, 等. Mogi模型在长白山天池火山区的应用[J]. 地震地质, 2007, 29(1): 144-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200701013.htm

    Hu Yaxuan, Wang Qingliang, Cui Duxin, et al. Application of Mogi Model at Changbaishan Tianchi Volcano[J]. Seismology and Geology, 2007, 29(1): 144-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200701013.htm
    [74]
    陈国浒, 单新建, Wooil M, 等. 基于InSAR、GPS形变场的长白山地区火山岩浆囊参数模拟研究[J]. 地球物理学报, 2008, 51(4): 1085-1092. doi: 10.3321/j.issn:0001-5733.2008.04.017

    Chen Guohu, Shan Xinjian, Wooil M, et al. A Modeling of the Magma Chamber Beneath the Changbai Mountains Volcanic Area Constrained by InSAR and GPS Derived Deformation[J]. Chinese Journal of Geophysics, 2008, 51(4): 1085-1092. doi: 10.3321/j.issn:0001-5733.2008.04.017
    [75]
    Meng Z G, Shu C Z, Yang Y, et al. Time Series Surface Deformation of Changbaishan Volcano Based on Sentinel-1B SAR Data and Its Geological Significance[J]. Remote Sensing, 2022, 14(5): 1213. doi: 10.3390/rs14051213
    [76]
    Trasatti E, Tolomei C, Wei L H, et al. Upward Magma Migration Within the Multi-level Plumbing System of the Changbaishan Volcano (China/North Korea) Revealed by the Modeling of 2018-2020 SAR Data[J]. Frontiers in Earth Science, 2021, 9: 741287. doi: 10.3389/feart.2021.741287
    [77]
    Ji L Y, Xu J D, Liu L, et al. A Review of Present-day Deformation of Active Volcanoes in China Between 1970 and 2013[J]. Geological Society Special Publications, 2021, 510(1): 215-226. doi: 10.1144/SP510-2019-228
    [78]
    季灵运, 王庆良, 崔笃信, 等. 利用SBAS-DInSAR技术提取腾冲火山区形变时间序列[J]. 大地测量与地球动力学, 2011, 31(4): 149-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201104035.htm

    Ji Lingyun, Wang Qingliang, Cui Duxin, et al. Time Series of Deformation in Tengchong Volcanic Area Extracted by SBAS-DInSAR[J]. Journal of Geodesy and Geodynamics, 2011, 31(4): 149-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201104035.htm
    [79]
    李春光, 王琼伟, 邵德晟, 等. 腾冲火山区的形变特征[J]. 地震研究, 2000, 23(2): 165-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200702010.htm

    Li Chunguang, Wang Qiongwei, Shao Desheng, et al. Deformation Feature in Tengchong Volcano Areas[J]. Journal of Seismological Research, 2000, 23(2): 165-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200702010.htm
    [80]
    许建东. 中国活动火山监测与研究历史回顾[J]. 城市与减灾, 2018(5): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJZ201805012.htm

    Xu Jiandong. Review of China Active Volcano Monitoring and Research History[J]. City and Disaster Reduction, 2018(5): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJZ201805012.htm
  • Related Articles

    [1]MAO Ya, WANG Qianxin, HU Chao, YANG Hongyi, ZHANG Mingbin. Analysis of the Characterization for BDS-3 Satellite Clock Error[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 53-61. DOI: 10.13203/j.whugis20180224
    [2]ZHAO Zhiyuan, YIN Ling, FANG Zhixiang, SHAW Shihlung, YANG Xiping. Impacts of Temporal Sampling Intervals on Stay Detection and Movement Network Construction in Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1152-1158. DOI: 10.13203/j.whugis20160303
    [3]TIAN Yingguo, HAO Jinming, CHEN Mingjian, YU Heli, HENG Peishen. Impact of Sample Rate of GPS Satellite Clock and Observation Data on LEO GPS-Based Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1792-1796. DOI: 10.13203/j.whugis20150591
    [4]HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827
    [5]MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186.
    [6]LI Jiangwei, LIU Jingnan, XIAO Jianhua, WANG Houzhi. Data Processing and Stability Analysis of Continuouly Operating Reference Stations Base-Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7): 825-829.
    [7]LIN Xiaojing, GUO Fei, LV Cuixian, XU Yun. Impacts of Sampling Rates of IGS Satellite Clock on Convergence of Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 683-686.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing. Impact of Sample Rate of IGS Satellite Clock on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 152-155.
    [9]NIU Fei, HAN Chunhao, ZHANG Yisheng, CHANG Shoufeng. Analysis and Detection on Atomic Clock Anomaly of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 585-588.
    [10]GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221.
  • Cited by

    Periodical cited type(2)

    1. 赖晓铭. 基于InSAR技术的福州市南江滨地区闽江堤岸沉降监测与分析. 测绘与空间地理信息. 2025(02): 184-187 .
    2. 欧书圆,张卫星. 顾及残差插值补偿的区域CORS对流层延迟建模研究. 测绘地理信息. 2024(05): 19-23 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return