ZHAO Zhiyuan, YIN Ling, FANG Zhixiang, SHAW Shihlung, YANG Xiping. Impacts of Temporal Sampling Intervals on Stay Detection and Movement Network Construction in Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1152-1158. DOI: 10.13203/j.whugis20160303
Citation: ZHAO Zhiyuan, YIN Ling, FANG Zhixiang, SHAW Shihlung, YANG Xiping. Impacts of Temporal Sampling Intervals on Stay Detection and Movement Network Construction in Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1152-1158. DOI: 10.13203/j.whugis20160303

Impacts of Temporal Sampling Intervals on Stay Detection and Movement Network Construction in Trajectory Data

Funds: 

The National Natural Science Foundation of China 41231171

The National Natural Science Foundation of China 41371420

The National Natural Science Foundation of China 41301440

the Natural Science Foundation of Guangdong Province 2014A030313684

Basic Research Project of Shenzhen City JCYJ20140610151856728

More Information
  • Author Bio:

    ZHAO Zhiyuan, PhD, specializes in space-time GIS. E-mail: zhaozhiyuan@whu.edu.cn

  • Corresponding author:

    FANG Zhixiang, PhD, professor. E-mail:zxfang@whu.edu.cn

  • Received Date: February 20, 2017
  • Published Date: August 04, 2018
  • Trajectory data have been extensively used in human mobility studies. Activities, especially conducted on a static and local space are basic elements of people's daily life, and they are represented as stays in trajectories. Hence detecting stays from trajectories has become a base for many activity-oriented studies. The temporal sampling interval (TSI) of trajectory data can impact the result of stay detection. However such impacts have not been systematically studied yet. This study proposes a probability-based framework, which aims to quantify the probability of an activity that with a specific duration time can be detected as a stay with different TSIs. Moreover, this framework can support further analysis on the evolution of daily movement network with different TSIs. We demonstrate the impacts of TSIs on stay detection and movement networks construction by using a trip survey dataset and a mobile phone location dataset of Shenzhen, China respectively. This study provides both metho-dological and empirical guidance on the decision-making of a TSI selection as well as the estimation of the results of activity-oriented studies.
  • [1]
    郑宇.城市计算概述[J].武汉大学学报·信息科学版, 2015, 40(1):1-13 http://ch.whu.edu.cn/CN/abstract/abstract3172.shtml

    Zheng Yu. Introduction to Urban Computing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1):1-13 http://ch.whu.edu.cn/CN/abstract/abstract3172.shtml
    [2]
    刘瑜.社会感知视角下的若干人文地理学基本问题再思考[J].地理学报, 2016, 71(4):566-577 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201604004.htm

    Liu Yu. Revisiting Several Basic Geographical Concepts:A Social Sensing Perspective[J]. Acta Geographica Sinica, 2016, 71(4):566-577 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201604004.htm
    [3]
    Timmermans H, Arentze T, Joh C-H. Analysing Space-Time Behaviour:New Approaches to Old Problems[J]. Progress in Human Geography, 2002, 26(2):175-190 doi: 10.1191/0309132502ph363ra
    [4]
    Davidson W, Donnelly R, Vovsha P, et al. Synthesis of First Practices and Operational Research Approaches in Activity-Based Travel Demand Modeling[J]. Transportation Research Part A:Policy and Practice, 2007, 41(5):464-488 doi: 10.1016/j.tra.2006.09.003
    [5]
    Alvares L O, Bogorny V, Kuijpers B, et al. A Model for Enriching Trajectories with Semantic Geographical Information[C]. The 15th Annual ACM International Symposium on Advances in Geographic Information Systems, New York, 2007
    [6]
    Palma A T, Bogorny V, Kuijpers B, et al. A Clustering-Based Approach for Discovering Interesting Places in Trajectories[C]. The 2008 ACM Sympo-sium on Applied Computing, New York, 2008
    [7]
    Zheng Y, Li Q, Chen Y, et al. Understanding Mobility Based on GPS Data[C]. The 10th International Conference on Ubiquitous Computing, New York, 2008
    [8]
    徐金垒, 方志祥, 萧世伦, 等.城市海量手机用户停留时空分异分析——以深圳市为例[J].地球信息科学学报, 2015, 17(2):197-205 doi: 10.3724/SP.J.1047.2015.00197

    Xu Jinlei, Fang Zhixiang, Shaw Shihlung, et al. The Spatio-Temporal Heterogeneity Analysis of Massive Urban Mobile Phone Users' Stay Beha-vior:A Case Study of Shenzhen City[J]. Journal of Geo-information Science, 2015, 17(2):197-205 doi: 10.3724/SP.J.1047.2015.00197
    [9]
    Zhang T, Cui P, Song C, et al. A Multiscale Survival Process for Modeling Human Activity Patterns[J]. PloS ONE, 2016, 11(3):e0151473 doi: 10.1371/journal.pone.0151473
    [10]
    侯艳, 何民, 张生斌.基于公交IC卡刷卡记录的居民出行OD推算方法研究[J].交通信息与安全, 2013, 30(6):109-114 http://www.cqvip.com/QK/91770A/201206/44477371.html

    Hou Yan, He Min, Zhang Shengbin. Origin-destination Matrix Estimation Method Based on Bus Smart Card Records[J]. Journal of Transport Information and Safety, 2013, 30(6):109-114 http://www.cqvip.com/QK/91770A/201206/44477371.html
    [11]
    Blondel V D, Decuyper A, Krings G. A Survey of Results on Mobile Phone Datasets Analysis[J]. EPJ Data Science, 2015, 10(4):1-55 http://arxiv.org/abs/1502.03406?context=cs.SI
    [12]
    王德, 王灿, 谢栋灿, 等.基于手机信令数据的上海市不同等级商业中心商圈的比较——以南京东路、五角场、鞍山路为例[J].城市规划学刊, 2015(3):50-60 https://www.wenkuxiazai.com/doc/201ec8d8ad51f01dc281f17f.html

    Wang De, Wang Can, Xie Dongcan, et al. Comparison of Retail Trade Areas of Retail Centers with Different Hierarchical Levels:A Case Study of East Nanjing Road, Wujiaochang, Anshan Road in Shanghai[J]. Urban Planning Forum, 2015(3):50-60 https://www.wenkuxiazai.com/doc/201ec8d8ad51f01dc281f17f.html
    [13]
    许宁, 尹凌, 胡金星.从大规模短期规则采样的手机定位数据中识别居民职住地[J].武汉大学学报·信息科学版, 2014, 39(6):750-756 http://ch.whu.edu.cn/CN/abstract/abstract3004.shtml

    Xu Ning, Yin Ling, Hu Jinxing. Identifying Home-Work Locations from Short-Term, Large-Scale, and Regularly Sampled Mobile Phone Tracking Data[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):750-756 http://ch.whu.edu.cn/CN/abstract/abstract3004.shtml
    [14]
    Openshaw S. The Modifiable Areal Unit Problem[M]. Norwich, England:Geo Books, Regency House, 1984
    [15]
    Cheng T, Adepeju M. Modifiable Temporal Unit Problem (MTUP) and its Effect on Space-Time Cluster Detection[J]. PLoS ONE, 2014, 9(6):e100465 doi: 10.1371/journal.pone.0100465
    [16]
    唐炉亮, 阚子涵, 黄方贞, 等.利用低频时空GPS轨迹进行交叉口通行时间探测[J].武汉大学学报·信息科学版, 2016, 41(1):136-142

    Tang Luliang, Kan Zihan, Huang Fangzhen, et al. Travel Time Detection at Intersection from Taxi's Trace Data[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1):136-142
    [17]
    Ranacher P, Brunauer R, van Der Spek S, et al. What is an Appropriate Temporal Sampling Rate to Record Floating Car Data with a GPS?[J]. ISPRS International Journal of Geo-Information, 2016, 5(1):1-17 doi: 10.3390/ijgi5010001
    [18]
    陈江平, 张瑶, 余远剑.空间自相关的可塑性面积单元问题效应[J].地理学报, 2012, 66(12):1597-1606 http://www.cqvip.com/QK/97363X/201607/669370403.html

    Chen Jiangping, Zhang Yao, Yu Yuanjian. Effect of MAUP in Spatial Autocorrelation[J]. Acta Geographica Sinica, 2012, 66(12):1597-1606 http://www.cqvip.com/QK/97363X/201607/669370403.html
    [19]
    Wang J F, Stein A, Gao B B, et al. A Review of Spatial Sampling[J]. Spatial Statistics, 2012, 2:1-14 doi: 10.1016/j.spasta.2012.08.001
    [20]
    Wang J F, Zhang T L, Fu B J. A Measure of Spatial Stratified Heterogeneity[J]. Ecological Indicators, 2016, 67:250-256 doi: 10.1016/j.ecolind.2016.02.052
    [21]
    Jiang S, Fiore G A, Yang Y, et al. A Review of Urban Computing for Mobile Phone Traces: Current Methods, Challenges and Opportunities[C]. The 2nd ACM SIGKDD International Workshop on Urban Computing, New York, 2013

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return