MAO Ya, WANG Qianxin, HU Chao, YANG Hongyi, ZHANG Mingbin. Analysis of the Characterization for BDS-3 Satellite Clock Error[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 53-61. DOI: 10.13203/j.whugis20180224
Citation: MAO Ya, WANG Qianxin, HU Chao, YANG Hongyi, ZHANG Mingbin. Analysis of the Characterization for BDS-3 Satellite Clock Error[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 53-61. DOI: 10.13203/j.whugis20180224

Analysis of the Characterization for BDS-3 Satellite Clock Error

Funds: 

The National Natural Science Foundation of China 41730109

the Natural Science Foundation of Jiangsu Province BK20181361

Postgraduate Research and Practice Innovation Program of Jiangsu Province SJCX18_0668

More Information
  • Author Bio:

    MAO Ya, master, specializes in precise satellite clock offset estimation and prediction. E-mail:maoya0428@foxmail.com

  • Corresponding author:

    WANG Qianxin, PhD, professor. E-mail:wqx@cumt.edu.cn

  • Received Date: October 20, 2018
  • Published Date: January 04, 2020
  • BeiDou global navigation satellite system (BDS-3) satellites are equipped with high-precision domestic new rubidium clocks and passive hydrogen atomic clocks. Compared with the satellites of BeiDou-2 system (BDS-2), the performance of BDS-3 has great promotion. In order to analyze the performance of the BDS-3 satellite clock, firstly the satellite clock errors of BDS-3 were estimated using the orbit determination software from BeiDou Data Processing and Analysis Center, China University of Mining and Technology, and the standard deviation accuracy of the overlapping arc segments is better than 1 ns. Then, based on the shortcomings of the commonly used satellite clock error outlier detection method, the Baarda gross error detection method was improved so that it can effectively handle the outliers with gross errors and clock slips in the clock errors data. Finally, the processed clock errors data were used to analyze the period characteristics and frequency stability. Analysis results show that the fitting residuals are more stable and the fitting accuracy has been greatly improved after adding two periodic terms. Compared with BDS-2 satellites, the frequency stability of BDS-3 satellites has increased by 20.85%-75.09%. The frequency stability of medium earth orbit (MEO) satellites of BeiDou navigation satellite system is better than that of inclined geosynchronous orbit (IGSO) satellites. The frequency stability of the hydrogen atomic clock is higher than that of the europium atomic clock up to 40.16%-65.60%, and the long-term stability of the hydrogen atomic clock is significantly better than that of the europium atomic clock.
  • [1]
    Yun Q, Lou Y, Dai X, et al. Benefits of Satellite Clock Modeling in BDS and Galileo Orbit Determination[J]. Advances in Space Research, 2017, 60(12):2 550-2 560 doi: 10.1016/j.asr.2017.03.040
    [2]
    Wang D, Guo R, Xiao S, et al. Atomic Clock Performance and Combined Clock Error Prediction for the New Generation of BeiDou Navigation Satellites[J]. Advances in Space Research, 2018, 63(9): 2 889-2 898
    [3]
    Huang G, Zhang Q, Li H, et al. Quality Variation of GPS Satellite Clocks on Orbit Using IGS Clock Products[J]. Advances in Space Research, 2013, 51(6):978-987 doi: 10.1016/j.asr.2012.09.041
    [4]
    黄观文. GNSS星载原子钟质量评价及精密钟差算法研究[D].长安: 长安大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10710-1013017231.htm

    Huang Guanwen.GNSS Satellite Atomic Clock Quality Evaluation and Precision Clock Algorithm[D]. Chang'an: Chang'an University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10710-1013017231.htm
    [5]
    田婕, 黄观文, 王利, 等.一种北斗二代卫星钟差的数据质量控制方法[J].大地测量与地球动力学, 2017, 37(2):215-220 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201702022

    Tian Jie, Huang Guanwen, Wang Li, et al. A Data Quality Control Method for the BeiDou-2 Satellite Clock Bias[J]. Journal of Geodesy and Geodynamics, 2017, 37(2):215-220 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201702022
    [6]
    Zhai Z C. The New Creations and Developments of On-board Atomic Clocks for the 3rd Generation of GNSS[J]. Progress in Astronomy, 2008, 26(4):301-310 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=twxjz200804001
    [7]
    王宁, 王宇谱, 李林阳, 等. BDS星载原子钟频率稳定性分析[J].武汉大学学报·信息科学版, 2017, 42(9):1 256-1 263 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201709011

    Wang Ning, Wang Yupu, Li Linyang, et al. Stability Analysis of the Space-Borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1 256-1 263 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201709011
    [8]
    胡志刚.北斗卫星导航系统性能评估理论与试验验证[D].武汉: 武汉大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10486-1014136513.htm

    BeiDou Navigation Satellite System Performance Assessment Theory and Experimental Verification[D]. Wuhan: Wuhan University, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10486-1014136513.htm
    [9]
    Steigenberger P, Hugentobler U, Hauschild A, et al. Orbit and Clock Analysis of Compass GEO and IGSO Satellites[J]. Journal of Geodesy, 2013, 87(6):515-525 doi: 10.1007/s00190-013-0625-4
    [10]
    Lou Y, Liu Y, Shi C, et al. Precise Orbit Determination of BeiDou Constellation: Method Comparison[J]. GPS Solutions, 2016, 20(2):259-268 doi: 10.1007/s10291-014-0436-y
    [11]
    Chen J P, Hu X G, Tang C P, et al. Orbit Determination and Time Synchronization for New-Generation BeiDou Satellites:Preliminary Results[J]. Scientia Sinica, 2016, 46(11):85-95
    [12]
    Zhao Q, Wang C, Guo J, et al. Precise Orbit and Clock Determination for BeiDou-3 Experimental Satellites with Yaw Attitude Analysis[J]. GPS Solutions, 2018, 22(1):4-9 doi: 10.1007/s10291-017-0673-y
    [13]
    李跃华, 蔺玉亭, 张达, 等.钟差数据处理方法研究[C].中国卫星导航学术年会, 上海, 2011

    Li Yuehua, Lin Yuting, Zhang Da, et al. Method Research on Clock Deviation Process[C]. China Satellite Navigation Conference, Shanghai, 2011
    [14]
    黄观文, 余航, 郭海荣, 等.北斗在轨卫星钟中长期钟差特性分析[J].武汉大学学报·信息科学版, 2017, 42(7):982-988 http://ch.whu.edu.cn/CN/abstract/abstract5784.shtml

    Huang Guanwen, Yu Hang, Guo Hairong, et al. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7):982-988 http://ch.whu.edu.cn/CN/abstract/abstract5784.shtml
    [15]
    毛亚, 王潜心, 胡超, 等.北斗三号试验卫星的钟差评估及预报[J].天文学报, 2018, 59(1):56-69 http://d.old.wanfangdata.com.cn/Periodical/twxb201801006

    Mao Ya, Wang Qianxin, Hu Chao, et al. Performance Analysis and Prediction of Clock Offsets for the BDS-3 Test Satellites[J]. Acta Astronomica Sinica, 2018, 59(1):56-69 http://d.old.wanfangdata.com.cn/Periodical/twxb201801006
    [16]
    Wang B, Lou Y, Liu J, et al. Analysis of BDS Satellite Clocks in Orbit[J]. GPS Solutions, 2015, 20(4):112-119 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201707018
    [17]
    Huang G, Cui B, Zhang Q, et al. An Improved Predicted Model for BDS Ultra-rapid Satellite Clock Offsets[J]. Remote Sensing, 2018, 10(1):60-67 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=remotesensing-10-00060
    [18]
    Xie X, Geng T, Zhao Q, et al. Performance of BDS-3: Measurement Quality Analysis, Precise Orbit and Clock Determination[J]. Sensors, 2017, 17(6):1 233-1 240 doi: 10.3390/s17061233
    [19]
    Montenbruck O, Steigenberger P, Prange L, et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) Achievements, Prospects and Challenges[J]. Advances in Space Research, 2017, 59(7):1 671-1 697 doi: 10.1016/j.asr.2017.01.011
  • Related Articles

    [1]GAO Xianjun, ZHENG Xuedong, SHEN Dajiang, YANG Yuanwei, ZHANG Jiahua. Automatic Building Extraction Based on Shadow Analysis from High Resolution Images in Suburb Areas[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1350-1357. DOI: 10.13203/j.whugis20150766
    [2]LIU Hui. Extraction of  the Floor Area Ratio in  the Central District  of  Fuzhou Cit y Based on an Improved Shadow Index Model[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10): 1241-1247.
    [3]LIN Zongjian, REN Chaofeng, YAO Na, XIE Feifei. A Shadow Compensation Method for Aerial Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 431-435.
    [4]GAO Xianjun, WAN Youchuan, ZHENG Shunyi, LI Jian. Automatic Shadow Detection and Compensation of Aerial Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1299-1302.
    [5]YAN Li, ZHAO Zhan, NIE Qian, YAO Yao. Ground Objects Extraction from High-Resolution Remote Sensing Image with Rules[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 636-639.
    [6]MING Ying, JIANG Jingjue. Moving Objects Detection and Shadows Elimination for Video Sequence[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12): 1216-1220.
    [7]YANG Jun, ZHAO Zhongming, YANG Jian. A Shadow Removal Method for High Resolution Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 17-20.
    [8]WANG Shugen, WANG Junli, WANG Aiping. Shadow Detection and Extraction from Imagery Based on Total Variation[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 663-666.
    [9]CHEN Jiwei, HAN Xuepei. Semiautomatic Extraction of Floor Area Ratio Based on Construction Shadow in High Resolution Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 580-582.
    [10]WANG Shugen, GUO Zejin, LI Deren. Shadow Compensation of Color Aerial Images[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 514-516.
  • Cited by

    Periodical cited type(1)

    1. 武芳,杜佳威,吴芳华. 海底地貌数据综合研究进展. 测绘学报. 2022(07): 1588-1605 .

    Other cited types(0)

Catalog

    Article views (1748) PDF downloads (334) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return