ZHONG Qianqian, XIAO Rui, CAO Hanrui, LI Xi, WU Ji. Evaluation of Qimingxing⁃1 Nighttime Light Image[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1273-1285. DOI: 10.13203/j.whugis20230035
Citation: ZHONG Qianqian, XIAO Rui, CAO Hanrui, LI Xi, WU Ji. Evaluation of Qimingxing⁃1 Nighttime Light Image[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1273-1285. DOI: 10.13203/j.whugis20230035

Evaluation of Qimingxing⁃1 Nighttime Light Image

More Information
  • Received Date: February 09, 2023
  • Available Online: March 30, 2023
  • Published Date: August 04, 2023
  •   Objectives  Qimingxing-1 (QMX-1) satellite can obtain nighttime light images, which was developed by Wuhan University and launched on 27 February 2022. In this study, we compare the QMX-1 nighttime light images with Luojia1-01 (LJ1-01) nighttime light images.
      Methods  The study selects the urban area of Beijing, Shenzhen and Wuhan as the study areas, and compares the two kinds of images in terms of statistical characteristics and road network analysis. Using wavelet decomposition to evaluate the spatial characteristics of QMX-1 nighttime light images.
      Results  The experimental results show that the digital number distribution of QMX-1 nighttime light images is different from that of the LJ1-01 nighttime light images. Besides, by comparing the coefficient of variation of four different surface feature types in the images, the pixel value of the QMX-1 nighttime light image is more homogeneous. For the road network analysis, the roads in QMX-1 nighttime light images are easier to identify, of which the digital number has a stronger correlation with road length and road kernel density. Additionally, in the QMX-1 nighttime light images, about 15% of the wavelet component energy is distributed in the 23 m and 46 m resolution, indicating that QMX-1 nighttime light images contain rich spatial details.
      Conclusions  The study shows that the QMX-1 nighttime light image is a nighttime light data with high quality, and nighttime light images with a spatial resolution about 20 m can effectively provide more detailed urban information.
  • [1]
    李德仁, 李熙. 论夜光遥感数据挖掘[J]. 测绘学报, 2015, 44(6): 591-601. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201506002.htm

    Li Deren, Li Xi. An Overview on Data Mining of Nighttime Light Remote Sensing[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 591-601. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201506002.htm
    [2]
    Levin N, Kyba C D, Zhang Q L, et al. Remote Sensing of Night Lights: A Review and an Outlook for the Future[J]. Remote Sensing of Environment, 2020, 237: 111443. doi: 10.1016/j.rse.2019.111443
    [3]
    Elvidge C D, Baugh K E, Kihn E A, et al. Relation Between Satellite Observed Visible-Near Infrared Emissions, Population, Economic Activity and Electric Power Consumption[J]. International Journal of Remote Sensing, 1997, 18(6): 1373-1379. doi: 10.1080/014311697218485
    [4]
    Elvidge C D, Baugh K E, Zhizhin M, et al. VIIRS Night-Time Lights[J]. International Journal of Remote Sensing, 2017, 38(21): 5860-5879. doi: 10.1080/01431161.2017.1342050
    [5]
    Elvidge C D, Baugh K E, Zhizhin M, et al. Why VIIRS Data are Superior to DMSP for Mapping Nighttime Lights[J]. Proceedings of the Asia⁃Pacific Advanced Network, 2013, 35: 62. doi: 10.7125/APAN.35.7
    [6]
    余柏蒗, 王丛笑, 宫文康, 等. 夜间灯光遥感与城市问题研究: 数据、方法、应用和展望[J]. 遥感学报, 2021, 25(1): 342-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101024.htm

    Yu Bailiang, Wang Congxiao, Gong Wenkang, et al. Nighttime Light Remote Sensing and Urban Studies: Data, Methods, Applications, and Prospects[J]. Journal of Remote Sensing, 2021, 25(1): 342-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101024.htm
    [7]
    Xie Y H, Weng Q H, Fu P. Temporal Variations of Artificial Nighttime Lights and Their Implications for Urbanization in the Conterminous United States, 2013—2017[J]. Remote Sensing of Environment, 2019, 225: 160-174. doi: 10.1016/j.rse.2019.03.008
    [8]
    Zhou Y Y, Smith S J, Elvidge C D, et al. A Cluster-Based Method to Map Urban Area from DMSP/OLS Nightlights[J]. Remote Sensing of Environment, 2014, 147: 173-185. doi: 10.1016/j.rse.2014.03.004
    [9]
    张霖, 李熙. 夜光遥感视角下的巴基斯坦区域发展差异分析[J]. 武汉大学学报(信息科学版), 2022, 47(2): 269-279. doi: 10.13203/j.whugis20210057

    Zhang Lin, Li Xi. Analysis on Disparity of Regional Development in Pakistan Under Perspective of Nighttime Light Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 269-279. doi: 10.13203/j.whugis20210057
    [10]
    陈宇伦, 陈丹妮, 李熙. 利用城市公共摄像头分析夜间灯光变化规律[J]. 武汉大学学报(信息科学版), 2022, 47(8): 1318-1327. doi: 10.13203/j.whugis20220235

    Chen Yulun, Chen Danni, Li Xi. Analysis of Night Lighting Change Law by Using Urban Public Cameras[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1318-1327. doi: 10.13203/j.whugis20220235
    [11]
    Forbes D J. Multi-scale Analysis of the Relationship Between Economic Statistics and DMSP-OLS Night Light Images[J]. GIScience & Remote Sensing, 2013, 50(5): 483-499.
    [12]
    Small C, Pozzi F, Elvidge C D. Spatial Analysis of Global Urban Extent from DMSP-OLS Night Lights[J]. Remote Sensing of Environment, 2005, 96(3): 277-291.
    [13]
    汪韬阳, 张过, 李沛然, 等. 基于DMSP/OLS夜光遥感影像的城市扩张政策驱动因素分析[J]. 测绘学报, 2018, 47(11): 1466-1473. doi: 10.11947/j.AGCS.2018.20170353

    Wang Taoyang, Zhang Guo, Li Peiran, et al. Analysis on the Driving Factors of Urban Expansion Policy Based on DMSP/OLS Remote Sensing Image[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11): 1466-1473. doi: 10.11947/j.AGCS.2018.20170353
    [14]
    陈晋, 卓莉, 史培军, 等. 基于DMSP/OLS数据的中国城市化过程研究: 反映区域城市化水平的灯光指数的构建[J]. 遥感学报, 2003, 7(3): 168-175. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200303001.htm

    Chen Jin, Zhuo Li, Shi Peijun, et al. The Study on Urbanization Process in China Based on DMSP/OLS Data: Development of a Light Index for Urbanization Level Estimation[J]. Journal of Remote Sensing, 2003, 7(3): 168-175. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200303001.htm
    [15]
    李熙, 巩钰. 夜间灯光遥感视角下的中国对中亚地区援助效果评估[J]. 武汉大学学报(信息科学版), 2023, DOI: 10.13203/j.whugis20220478

    Li Xi, Gong Yu. Evaluation of China's Aid to Central Asia from the Perspective of Night-Time Light Remote Sensing [J]. Geomatics and Information Science of Wuhan University, 2023, DOI: 10.13203/j.whugis20220478.
    [16]
    Li H L, Peng J, Liu Y X, et al. Urbanization Impact on Landscape Patterns in Beijing City, China: A Spatial Heterogeneity Perspective[J]. Ecological Indicators, 2017, 82: 50-60. doi: 10.1016/j.ecolind.2017.06.032
    [17]
    Zhao X, Li X, Zhou Y Y, et al. Analyzing Urban Spatial Connectivity Using Night Light Observations: A Case Study of Three Representative Urban Agglomerations in China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1097-1108. doi: 10.1109/JSTARS.2020.2980514
    [18]
    Li X, Xu H M, Chen X L, et al. Potential of NPP-VIIRS Nighttime Light Imagery for Modeling the Regional Economy of China[J]. Remote Sensing, 2013, 5(6): 3057-3081. doi: 10.3390/rs5063057
    [19]
    Bennett M M, Smith L C. Advances in Using Multitemporal Night-Time Lights Satellite Imagery to Detect, Estimate, and Monitor Socioeconomic Dynamics[J]. Remote Sensing of Environment, 2017, 192: 176-197. doi: 10.1016/j.rse.2017.01.005
    [20]
    Jiang W, He G J, Long T F, et al. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution[J]. Sensors, 2018, 18(9): 2900. doi: 10.3390/s18092900
    [21]
    Jiang W, He G J, Leng W C, et al. Characterizing Light Pollution Trends Across Protected Areas in China Using Nighttime Light Remote Sensing Data[J]. ISPRS International Journal of Geo⁃Information, 2018, 7(7): 243. doi: 10.3390/ijgi7070243
    [22]
    Li X, Li X Y, Li D R, et al. A Preliminary Investigation of Luojia-1 Night-Time Light Imagery[J]. Remote Sensing Letters, 2019, 10(6): 526-535. doi: 10.1080/2150704X.2019.1577573
    [23]
    Li X, Zhao L X, Li D R, et al. Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery[J]. Sensors, 2018, 18(11): 3665. doi: 10.3390/s18113665
    [24]
    李德仁, 张过, 沈欣, 等. 珞珈一号01星夜光遥感设计与处理[J]. 遥感学报, 2019, 23(6): 1011-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201906001.htm

    Li Deren, Zhang Guo, Shen Xin, et al. Design and Processing Night Light Remote Sensing of LJ1-01 Satellite[J]. Journal of Remote Sensing, 2019, 23(6): 1011-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201906001.htm
    [25]
    厉飞, 闫庆武, 邹雅婧, 等. 利用夜间灯光POI的城市建成区提取精度研究: 以珞珈一号01星和NPP/VIIRS夜间灯光影像为例[J]. 武汉大学学报(信息科学版), 2021, 46(6): 825-835. doi: 10.13203/j.whugis20190266

    Li Fei, Yan Qingwu, Zou Yajing, et al. Extraction Accuracy of Urban Built-up Area Based on Nighttime Light Data and POI: A Case Study of Luojia 1-01 and NPP/VIIRS Nighttime Light Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 825-835. doi: 10.13203/j.whugis20190266
    [26]
    刘权毅, 詹庆明, 李建松, 等. 珞珈一号夜间灯光影像在建设用地提取中的应用: 以武汉市为例[J]. 武汉大学学报(信息科学版), 2021, 46(1): 30-39. doi: 10.13203/j.whugis20190376

    Liu Quanyi, Zhan Qingming, Li Jiansong, et al. Extracting Built-Up Areas Using Luojia-1: A Nighttime Light Imageries in Wuhan, China[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 30-39. doi: 10.13203/j.whugis20190376
    [27]
    Meijer J R, Huijbregts M A J, Schotten K C G J, et al. Global Patterns of Current and Future Road Infrastructure[J]. Environmental Research Letters, 2018, 13(6): 064006.
    [28]
    Cheng F Y, Liu S L, Hou X Y, et al. Urban Land Extraction Using DMSP/OLS Nighttime Light Data and OpenStreetMap Datasets for Cities in China at Different Development Levels[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2587-2599.
    [29]
    Wang L Y, Fan H, Wang Y K. An Estimation of Housing Vacancy Rate Using NPP-VIIRS Night-Time Light Data and OpenStreetMap Data[J]. International Journal of Remote Sensing, 2019, 40(22): 8566-8588.
    [30]
    Wang C X, Chen Z Q, Yang C S, et al. Analyzing Parcel-Level Relationships Between Luojia 1-01 Nighttime Light Intensity and Artificial Surface Features Across Shanghai, China: A Comparison with NPP-VIIRS Data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 85: 101989.
    [31]
    Schwind P, Storch T. Georeferencing Urban Nighttime Lights Imagery Using Street Network Maps[J]. Remote Sensing, 2022, 14(11): 2671.
    [32]
    Zhao M, Zhou Y Y, Li X C, et al. Building a Series of Consistent Night-Time Light Data (1992–2018) in Southeast Asia by Integrating DMSP-OLS and NPP-VIIRS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1843-1856.
    [33]
    Yang Y L, Ma M G, Zhu X B, et al. Research on Spatial Characteristics of Metropolis Development Using Nighttime Light Data: NTL Based Spatial Characteristics of Beijing[J]. PLOS One, 2020, 15(11): e0242663.
    [34]
    Shen Z Y, Zhu X L, Cao X, et al. Measurement of Blooming Effect of DMSP-OLS Nighttime Light Data Based on NPP-VIIRS Data[J]. Annals of GIS, 2019, 25(2): 153-165.
    [35]
    Zhou Q, Zheng Y M, Shao J Y, et al. An Improved Method of Determining Human Population Distribution Based on Luojia 1-01 Nighttime Light Imagery and Road Network Data—A Case Study of the City of Shenzhen[J]. Sensors (Basel, Switzerland), 2020, 20(18): 5032.
    [36]
    JTG B01—2014. 公路工程技术标准[S]. 北京: 人民交通出版社, 2014.

    JTG B01—2014. Technical Standard of Highway Engineering[S]. Beijing: China Communication Press, 2014
    [37]
    Wang N C, Liu Y F, Wang J Z, et al. Investigating the Potential of Using POI and Nighttime Light Data to Map Urban Road Safety at the Micro-Level: A Case in Shanghai, China[J]. Sustainability, 2019, 11(17): 4739.
    [38]
    Silverman B W. Density Estimation for Statistics and Data Analysis[M]. London: Chapman and Hall, 1986.
    [39]
    Xu H M, Li X. Evaluating Spatial Details of Luojia-1 Night-Time Images Using Road Network Analysis[M]// Singapore: Springer Singapore, 2020.
    [40]
    Gao J Q, Wang B B, Wang Z Y, et al. A Wavelet Transform-Based Image Segmentation Method[J]. Optik, 2020, 208: 164123.
    [41]
    Liu Y, Chen X, Wang Z F, et al. Deep Learning for Pixel-Level Image Fusion: Recent Advances and Future Prospects[J]. Information Fusion, 2018, 42: 158-173.
    [42]
    Aymaz S, Köse C. A Novel Image Decomposition-Based Hybrid Technique with Super-Resolution Method for Multi-focus Image Fusion[J]. Information Fusion, 2019, 45: 113-127.
    [43]
    Levin N, Zhang Q L. A Global Analysis of Factors Controlling VIIRS Nighttime Light Levels from Densely Populated Areas[J]. Remote Sensing of Environment, 2017, 190: 366-382.
  • Related Articles

    [1]NIU Quanfu, LIU Mingzhi, ZHANG Man, CHENG Weiming. Vegetation Dynamic Change and Its Response to Climate and Topography in Altay Region of Xinjiang in Recent 20 Years[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1522-1530. DOI: 10.13203/j.whugis20210189
    [2]ZHANG Chen, HE Biao, GUO Renzhong, MA Ding, CHEN Yebin. A Data Conversion Method from Oblique Photogrammetric 3D Models to Renderable Assets in Unreal Engine 4[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 514-524. DOI: 10.13203/j.whugis20210574
    [3]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [4]LEI Lei, LI Zhenhong, YANG Hao, YANG Guijun. Extraction of the Leaf Area Density of Maize Using UAV-LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1737-1745. DOI: 10.13203/j.whugis20200674
    [5]YU Ying, SONG Zhangliang, FAN Wenyi, YANG Xiguang. Scale Conversion from Canopy Spectra to Leaf Spectra[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1560-1565, 1573. DOI: 10.13203/j.whugis20160552
    [6]QIN Zhanfei, SHEN Jian, XIE Baoni, YAN Lin, CHANG Qingrui. Hyperspectral Estimation Model for Predicting LAI of Rice in Ningxia Irrigation Zone[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1159-1166. DOI: 10.13203/j.whugis20150132
    [7]ZHANG Xun, ZHONG Ershun, ZHANG Xiaohu, WANG Shaohua, LI Shaojun. A Modified Algorithm to Construct Gridded Area Cartogramsby Scale Effect Index[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1100-1104. DOI: 10.13203/j.whugis20130370
    [8]LIU Hui. Extraction of  the Floor Area Ratio in  the Central District  of  Fuzhou Cit y Based on an Improved Shadow Index Model[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10): 1241-1247.
    [9]XIONG Jinguo, WANG Shixin, ZHOU Yi, Yan Fuli. Influence of Landscape Pattern Index on the Area Extracted from ETM~+ and MODIS[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 98-103.
    [10]WANG Xiaohong, LIU Yaolin, DU Xiao. Drought Monitoring Using Vegetation Leaf Water in China[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 498-501.

Catalog

    Article views (879) PDF downloads (142) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return