NIU Quanfu, LIU Mingzhi, ZHANG Man, CHENG Weiming. Vegetation Dynamic Change and Its Response to Climate and Topography in Altay Region of Xinjiang in Recent 20 Years[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1522-1530. DOI: 10.13203/j.whugis20210189
Citation: NIU Quanfu, LIU Mingzhi, ZHANG Man, CHENG Weiming. Vegetation Dynamic Change and Its Response to Climate and Topography in Altay Region of Xinjiang in Recent 20 Years[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1522-1530. DOI: 10.13203/j.whugis20210189

Vegetation Dynamic Change and Its Response to Climate and Topography in Altay Region of Xinjiang in Recent 20 Years

More Information
  • Received Date: June 19, 2021
  • Available Online: July 21, 2022
  • Objectives 

    Vegetation plays an important role in ecological environment monitoring. Studying vegetation cover change can provide reference for regional ecological environment protection. The region of Altay in Xinjiang belongs to the ecological function zone of water conservation mountain grassland, with rich natural resources and beautiful scenery. However, the ecological environmental problems were gradually emerging under the national development strategies. Therefore, monitoring the dynamics of vegetation change in the area with multi-source remote sensing data is necessary to explore the relationship between the economic development and ecological environment protection.

    Methods 

    This paper uses multi-source remote sensing long time series data with breaks for additive seasonal and trend, topographical position and geostatistical analysis methods to monitor the vegetation cover dynamics in Altay of Xinjiang, China during 2000—2019.

    Results 

    This paper processed large number of multisource remote sensing data along with human activity data and showed that during the study period, the number of vegetation breakpoints increased year by year from 2003 to 2009, and then gradually decreased after 2009. Meanwhile, seven types of vegetation breakpoint trends were detected, among them, the more number of breakpoints from degradation to growth type was identified, and the types of disturbance degradation and continuous degradation were less. From the interannual change curve, the dynamic change of vegetation coverage showed a trend of first decreasing and then increasing, that is, the vegetation coverage showed a degradation trend from 2000 to 2008 and a significant improvement trend from 2008 to 2019, and the degradation was greater than the improvement. Meanwhile, the east slope with an elevation of more than 900 m and a slope of more than 15° (from north to east and from south to east) is the dominant topographic location of vegetation degradation type, accounting for 62.4%.

    Conclusions 

    The protection of ecological environment in Altay of Xinjiang still needs to be further strengthened and effective protection measures should be taken.

  • [1]
    张玉东, 谭红兵. 黄土高原典型干旱区退耕还林后植被覆盖变化研究[J]. 生态科学, 2017, 36(1)139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX201701019.htm

    Zhang Yudong, Tan Hongbing. Study on Changes of Land Cover in the Typical Arid Region of the Loess Plateau After the Grain for Green Project[J]. Ecological Science, 2017, 36(1)139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX201701019.htm
    [2]
    王智超. 基于Landsat的新疆罗布泊地区植被覆盖度时空变化及其与气候因子的关系[D]. 石家庄: 河北师范大学, 2018.

    Wang Zhichao. Spatial-Temporal Variation of Vegetation Coverage in Lop Nur Region of Xinjiang Based on Landsat and Its Relationship with Climate Factors[D]. Shijiazhuang: Hebei Normal University, 2018.
    [3]
    刘雅婷, 龚龑, 段博, 等. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测[J]. 武汉大学学报(信息科学版), 2020, 45(2): 265-272. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202002015.htm

    Liu Yating, Gong Yan, Duan Bo, et al. Combining Multi-temporal NDVI and Abundance from UAV Remote Sensing Data for Oilseed Rape Growth Monitoring[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 265-272. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202002015.htm
    [4]
    Wittich K P, Hansing O. Area-Averaged Vegetative Cover Fraction Estimated from Satellite Data[J]. International Journal of Biometeorology, 1995, 38(4): 209-215. doi: 10.1007/BF01245391
    [5]
    Purevdorj T, Tateishi R, Ishiyama T, et al. Relationships Between Percent Vegetation Cover and Vegetation Indices[J]. International Journal of Remote Sensing, 1998, 19(18): 3519-3535. doi: 10.1080/014311698213795
    [6]
    陈学兄, 张小军, 陈永贵, 等. 陕西省1998—2008年植被覆盖度的时空变化研究[J]. 武汉大学学报(信息科学版), 2013, 38(6): 674-678. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201306011.htm

    Chen Xuexiong, Zhang Xiaojun, Chen Yonggui, et al. Spatiotemporal Change of Vegetation Coverage in Shaanxi Province from 1998 to 2008[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 674-678. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201306011.htm
    [7]
    蒋丽伟, 张家琦, 赵一臣, 等. 北京山区典型林分生长季叶面积指数动态变化[J]. 林业资源管理, 2019(2): 132-136. https://www.cnki.com.cn/Article/CJFDTOTAL-LYZY201902019.htm

    Jiang Liwei, Zhang Jiaqi, Zhao Yichen, et al. Dynamic Change of Leaf Area Index in the Growing Season of Typical Forests in Beijing Mountainous Area[J]. Forest Resources Management, 2019(2): 132-136. https://www.cnki.com.cn/Article/CJFDTOTAL-LYZY201902019.htm
    [8]
    Qiu R, Han G, Ma X, et al. A Comparison of OCO-2 SIF, MODIS GPP, and GOSIF Data from Gross Primary Production (GPP) Estimation and Seasonal Cycles in North America[J]. Remote Sensing, 2020, 12(2): 258. doi: 10.3390/rs12020258
    [9]
    Niu Q F, Xiao X M, Zhang Y, et al. Ecological Engineering Projects Increased Vegetation Cover, Production, and Biomass in Semiarid and Subhumid Northern China[J]. Land Degradation & Development, 2019, 30(13): 1620-1631.
    [10]
    Zhang Y, Xiao X, Wu X, et al. A Global Moderate Resolution Dataset of Gross Primary Production of Vegetation for 2000—2016[J]. Scientific Data, 2017, 4: 170165. doi: 10.1038/sdata.2017.165
    [11]
    Vicente-Serrano S M, Beguería S, López-Moreno J I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index[J]. Journal of Climate, 2010, 23(7): 1696-1718. doi: 10.1175/2009JCLI2909.1
    [12]
    沈国强, 郑海峰, 雷振锋. SPEI指数在中国东北地区干旱研究中的适用性分析[J]. 生态学报, 2017, 37(11): 3787-3795. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201711020.htm

    Shen Guoqiang, Zheng Haifeng, Lei Zhenfeng. Applicability Analysis of SPEI for Drought Research in Northeast China[J]. Acta Ecologica Sinica, 2017, 37(11): 3787-3795. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201711020.htm
    [13]
    Verbesselt J, Zeileis A, Herold M. Near Real-Time Disturbance Detection Using Satellite Image Time Series[J]. Remote Sensing of Environment, 2012, 123: 98-108.
    [14]
    李焕, 李新豫, 白松竹. 阿勒泰地区旅游气候指数及评价[J]. 陕西气象, 2010(5): 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SXQI201005007.htm

    Li Huan, Li Xinyu, Bai Songzhu. Tourism Climate and Evaluation of Comfortableness in Altai, Xinjiang[J]. Journal of Shaanxi Meteorology, 2010(5): 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SXQI201005007.htm
    [15]
    Tong X, Brandt M, Yue Y, et al. Increased Vegetation Growth and Carbon Stock in China Karst via Ecological Engineering[J]. Nature Sustainability, 2018, 1(1): 44-50.
    [16]
    Lu H. Decomposition of Vegetation Cover into Woody and Herbaceous Components Using AVHRR NDVI Time Series[J]. Remote Sensing of Environment, 2003, 86(1), DOI: 10.1016/S0034-4257(03)00054-3.
    [17]
    彭道黎, 滑永春. 北京延庆县植被恢复动态遥感监测研究[J]. 中南林业科技大学学报, 2008, 28(4): 159-164. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB200804031.htm

    Peng Daoli, Hua Yongchun. Dynamic Monitoring of the Vegetation Restoration in Yanqing County, Beijing Based on Remote Sensing[J]. Journal of Central South University of Forestry & Technology, 2008, 28(4): 159-164. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB200804031.htm
    [18]
    孙久虎, 张晶, 张洁, 等. 近20年来北运河地区植被覆盖时空变化研究[J]. 首都师范大学学报(自然科学版), 2007, 28(2): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSX200702020.htm

    Sun Jiuhu, Zhang Jing, Zhang Jie, et al. The Study of Changes of Beiyunhe Valley􀆳s Vegetation Cover[J]. Journal of Capital Normal University (Natural Sciences Edition), 2007, 28(2): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSX200702020.htm
    [19]
    牛全福, 张映雪, 冯尊斌. 兰州南北两山植被覆盖变化动态监测[J]. 兰州理工大学学报, 2017, 43(3): 146-150. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201703028.htm

    Niu Quanfu, Zhang Yingxue, Feng Zunbin. Dynamic Monitoring of Vegetation Coverage Variation on Southern and Northern Two Mountains in Lanzhou[J]. Journal of Lanzhou University of Technology, 2017, 43(3): 146-150. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201703028.htm
    [20]
    李登科, 范建忠, 王娟. 陕西省植被覆盖度变化特征及其成因[J]. 应用生态学报, 2010, 21(11): 2896-2903. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201011026.htm

    Li Dengke, Fan Jianzhong, Wang Juan. Change Characteristics and Their Causes of Fractional Vegetation Coverage(FVC)in Shaanxi Province[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2896-2903. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201011026.htm
    [21]
    李苗苗. 植被覆盖度的遥感估算方法研究[D]. 北京: 中国科学院研究生院(遥感应用研究所), 2003.

    Li Miaomiao. Study on Remote Sensing Estimation Method of Vegetation Coverage[D]. Beijing: Institute of Remote Sensing Application, CAS, 2003.
    [22]
    Zhou X. Natural Eco-Environmental Evaluation of West Route Area of Interbasin Water Transfer Project[J]. ActaGeographica Sinica, 2002, 57(1): 11-18.
    [23]
    孟浩斌, 周启刚, 李明慧, 等. 基于MODIS像元尺度的三峡库区植被覆盖度变化的地形分布特征[J]. 长江流域资源与环境, 2020, 29(8): 1790-1799. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY202008011.htm

    Meng Haobin, Zhou Qigang, Li Minghui, et al. Topographic Distribution Characteristics of Vegetation Cover Change in the Three Gorges Reservoir Area Based on MODIS Pixel Scale[J]. Resources and Environment in the Yangtze Basin, 2020, 29(8): 1790-1799. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY202008011.htm
    [24]
    王毅, 郭跃. 喀斯特地貌区植被覆盖与地形因子的空间关系分析: 以贵州普定县为例[J]. 长江流域资源与环境, 2018, 27(1): 157-167. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201801018.htm

    Wang Yi, Guo Yue. Analysis of Spatial Correlation Between Vegetation Coverage and Terrain Factors in Karst Landform: Taking Puding Area in Guizhou for Example[J]. Resources and Environment in the Yangtze Basin, 2018, 27(1): 157-167. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201801018.htm
    [25]
    陈效逑, 王恒. 1982-2003年内蒙古植被带和植被覆盖度的时空变化[J]. 地理学报, 2009, 64(1): 84-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200901010.htm

    Chen Xiaoqiu, Wang Heng. Spatial and Temporal Variations of Vegetation Belts and Vegetation Cover Degrees in Inner Mongolia from 1982 to 2003[J]. Acta Geographica Sinica, 2009, 64(1): 84-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200901010.htm
  • Related Articles

    [1]DU Yan, NING Lize, XIE Mowen, BAI Yunfei, LI Heng, JIA Beining. A Prediction Model of Landslide Displacement in Reservoir Area Considering Time Lag Effect[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1347-1355. DOI: 10.13203/j.whugis20220133
    [2]XIAO Ruya, HE Xiufeng. Deformation Monitoring of Reservoirs and Dams Using Time-Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1334-1341. DOI: 10.13203/j.whugis20170327
    [3]ZHANG Yan, LV Pinji, LIU Jia. Impact of the Yangtze River Three Gorges Reservoir on Fault Activity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1497-1500. DOI: 10.13203/j.whugis20140983
    [4]HUANG Shengxiang, LUO Li. Stability Analysis and Results of the Landslide MonitoringDatum in the Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 367-372. DOI: 10.13203/j.whugis20120019
    [5]WU Xueling, REN Fu, NIU Ruiqing. Spatial Intelligent Prediction of Landslide Hazard Based on Multi-source Data in Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 963-968.
    [6]HU Teng, DU Ruilin, ZHANG Zhenhua, WU Yue. Simulation and Mechanism Analysis on Crustal Vertically Deformation in Three Gorges Reservoir Area Under the Condition of Reservoir Impoundment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 33-36.
    [7]WU Tao, YAN Huiwu, TANG Guigang. Prediction on Time Series Analysis of Water Quality in Yangtze Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2006, 31(6): 500-502.
    [8]DU Ruilin, QIAO Xuejun, YANG Shaomin, WANG Qi. Results of the Crustal Deformation by GPS Survey and Horizontal Strain Rate Fields in the Three Gorges Area[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 768-771.
    [9]SHI Dong, CHEN Jun, ZHU Qing. Oil-Gas Reservoir Evaluation Based on GIS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 592-596.
    [10]JIANG Fuzhen. Role of Gravimetry in Monitoring the Crustal Deformation of Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 679-682.
  • Cited by

    Periodical cited type(6)

    1. 李惠民,彭紫薇,李相如. 气候变化下干旱对大别山区植被的影响研究. 治淮. 2024(12): 44-46 .
    2. 谢萍,张双喜,金涛勇,韦瑜,蔡剑锋,许晨. 武汉市GRACE水储量变化与气象干旱关联趋势分析. 排灌机械工程学报. 2023(06): 624-629 .
    3. 胡艳茹,梁丽娇,何立平,许文锋,刘正学,兰波. 三峡水库蓄水前后库区及周边区域降水变化及其影响因素. 地理研究. 2023(07): 1921-1940 .
    4. 肖家豪,张双喜,韦瑜,蔡剑锋,洪敏. 基于GPS垂向位移测定云南地区陆地水储量及其对累积降雨的响应机制. 测绘通报. 2022(01): 61-65 .
    5. 咬登魁,段功豪. 基于季节性SARIMA模型的武汉市长序列降雨量趋势分析与预测. 地下水. 2022(02): 166-168 .
    6. 谢萍,张双喜,周吕,李庆隆,肖家豪,蔡剑锋. 武汉市中心城区地表形变与洪涝灾害防治新策略. 武汉大学学报(信息科学版). 2021(07): 1015-1024 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return