RAN Jiangjun, YAN Zhengwen, WU Yunlong, ZHONG Min, XIAO Yun, LOU Lizhi, WANG Changqing. Research Status and Future Perspectives in Next Generation Gravity Mission[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 841-857. DOI: 10.13203/j.whugis20220629
Citation: RAN Jiangjun, YAN Zhengwen, WU Yunlong, ZHONG Min, XIAO Yun, LOU Lizhi, WANG Changqing. Research Status and Future Perspectives in Next Generation Gravity Mission[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 841-857. DOI: 10.13203/j.whugis20220629

Research Status and Future Perspectives in Next Generation Gravity Mission

More Information
  • Received Date: September 26, 2022
  • Available Online: June 11, 2023
  • Published Date: June 04, 2023
  • In the past two decades, satellite gravimetry has been widely developed to map the mass distribution on the Earth system. It helps human beings to have a deeper understanding of the dynamic processes that occur on the Earth's surface (e.g., atmosphere, hydrosphere, ocean, and polar ice sheets). This paper reviews the development history of challenging minisatellite payload, gravity recovery and climate experiment, gravity field and steady-state ocean circulation explorer, and gravity recovery and climate experiment follow-on. We briefly describe the research progress and problems of these gravity satellite missions. In order to overcome the shortcomings of the gravity satellites mentioned above, international research institutions propose numerous plans and simulation analyses for the next generation gravity mission (NGGM). This paper sorts out the task concepts, expected accuracy, and status for 12 kinds of NGGM proposed by international agencies. In order to introduce NGGM more clearly and grasp its current progress, we divide NGGM into four categories according to constellation configuration and satellite payload technology, including Sharifi-type gravity satellite constellation, Bender-type gravity satellite constellation, Satellite-link gravity satellite constellation, and Cold-atom gravity satellite constellation. This paper aims to sort out and summarize the NGGM to grasp the progress at this stage and presents some future perspectives for NGGM.
  • [1]
    宁津生. 卫星重力探测技术与地球重力场研究[J]. 大地测量与地球动力学, 2002, 22(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200201000.htm

    Ning Jinsheng. The Satellite Gravity Surveying Technology and Research of Earth's Gravity Field[J]. Journal of Geodesy and Geodynamics, 2002, 22(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200201000.htm
    [2]
    闫政文, 谭捍东, 彭淼, 等. 基于交叉梯度约束的重力、磁法和大地电磁三维联合反演[J]. 地球物理学报, 2020, 63(2): 736-752. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202002040.htm

    Yan Zhengwen, Tan Handong, Peng Miao, et al. Three-dimensional Joint Inversion of Gravity, Magnetic and Magnetotelluric Data Based on Cross-gradient Theory[J]. Chinese Journal of Geophysics, 2020, 63(2): 736-752. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202002040.htm
    [3]
    胡敏章, 李建成, 金涛勇, 等. 联合多源数据确定中国海及周边海底地形模型[J]. 武汉大学学报(信息科学版), 2015, 40(9): 1266-1273. doi: 10.13203/j%20.whu%20g%20is20130700

    Hu Minzhang, Li Jiancheng, Jin Taoyong, et al. Recovery of Bathymetry over China Sea and Its Adjacent Areas by Combination of Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1266-1273. doi: 10.13203/j%20.whu%20g%20is20130700
    [4]
    郭良辉, 孟小红, 石磊, 等. 优化滤波方法及其在中国大陆布格重力异常数据处理中的应用[J]. 地球物理学报, 2012, 55(12): 4078-4088. doi: 10.6038/j.issn.0001-5733.2012.12.020

    Guo Lianghui, Meng Xiaohong, Shi Lei, et al. Pre-ferential Filtering Method and Its Application to Bouguer Gravity Anomaly of Chinese Continent[J]. Chinese Journal of Geophysics, 2012, 55(12): 4078-4088. doi: 10.6038/j.issn.0001-5733.2012.12.020
    [5]
    孙文科. 低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场: 卫星重力大地测量的最新发展及其对地球科学的重大影响[J]. 大地测量与地球动力学, 2002, 22(1): 92-100. doi: 10.3969/j.issn.1671-5942.2002.01.017

    Sun Wenke. Satellite In Low Orbit(CHAMP, GRACE, GOCE) and High Precision Earth Gravity Field: The Latest Progress of Satellite Gravity Geodesy and Its Great Influence on Geoscience[J]. Journal of Geodesy and Geodynamics, 2002, 22(1): 92-100. doi: 10.3969/j.issn.1671-5942.2002.01.017
    [6]
    宁津生, 王正涛. 地球重力场研究现状与进展[J]. 测绘地理信息, 2013, 38(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201301003.htm

    Ning Jinsheng, Wang Zhengtao. Progress and Present Status of Research on Earth's Gravitational Field[J]. Journal of Geomatics, 2013, 38(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201301003.htm
    [7]
    Panet I, Flury J, Biancale R, et al. Earth System Mass Transport Mission (e. motion): A Concept for Future Earth Gravity Field Measurements from Space[J]. Surveys in Geophysics, 2013, 34(2): 141-163. doi: 10.1007/s10712-012-9209-8
    [8]
    冉将军, 钟敏, 许厚泽, 等. 模拟分析低低跟踪模式重力卫星反演地球重力场的精度[J]. 地球物理学报, 2015, 58(10): 3487-3495. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510005.htm

    Ran Jiangjun, Zhong Min, Xu Houze, et al. Analysis of the Gravity Field Recovery Accuracy from the Low-Low Satellite-to-Satellite Tracking Mission[J]. Chinese Journal of Geophysics, 2015, 58(10): 3487-3495. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510005.htm
    [9]
    冉将军, 许厚泽, 沈云中, 等. 新一代GRACE重力卫星反演地球重力场的预期精度[J]. 地球物理学报, 2012, 55(9): 2898-2908. doi: 10.6038/j.issn.0001-5733.2012.09.009

    Ran Jiangjun, Xu Houze, Shen Yunzhong, et al. Expected Accuracy of the Global Gravity Field for Next GRACE Satellite Gravity Mission[J]. Chinese Journal of Geophysics, 2012, 55(9): 2898-2908. doi: 10.6038/j.issn.0001-5733.2012.09.009
    [10]
    Zhou H, Luo Z C, Zhou Z B, et al. What can we Expect from the Inclined Satellite Formation for Temporal Gravity Field Determination?[J]. Surveys in Geophysics, 2021, 42(3): 699-726. doi: 10.1007/s10712-021-09641-9
    [11]
    邹贤才, 李建成, 衷路萍, 等. 动力法校准GRACE星载加速度计[J]. 武汉大学学报(信息科学版), 2015, 40(3): 357-360. http://ch.whu.edu.cn/article/id/3210

    Zou Xiancai, Li Jiancheng, Zhong Luping, et al. Calibration of the Accelerometers Onboard GRACE with the Dynamic Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 357-360. http://ch.whu.edu.cn/article/id/3210
    [12]
    吴云龙, 郭泽华, 肖云, 等. 卫星重力梯度观测数据L1级构建方法[J]. 地球物理学报, 2021, 64(12): 4437-4448. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202112016.htm

    Wu Yunlong, Guo Zehua, Xiao Yun, et al. L1 Level Construction Method of Satellite Gravity Gradiometry Observations[J]. Chinese Journal of Geophysics, 2021, 64(12): 4437-4448. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202112016.htm
    [13]
    牛晗晗, 王长青, 钟敏, 等. GRACE-FO加速度计校正方法研究[J]. 大地测量与地球动力学, 2021, 41(10): 998-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202110002.htm

    Niu Hanhan, Wang Changqing, Zhong Min, et al. Research on Calibration Method of GRACE-FO Accelerometer[J]. Journal of Geodesy and Geodynamics, 2021, 41(10): 998-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202110002.htm
    [14]
    郭泽华, 吴云龙, 肖云, 等. 联合星象仪四元数的卫星重力梯度测量角速度重建方法[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1336-1344. doi: 10.13203/j.whugis20200595

    Guo Zehua, Wu Yunlong, Xiao Yun, et al. Reconstruction Method of Satellite Gravity Gradient Measurement Angular Velocity by Combining Star Tracker Quaternion[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1336-1344. doi: 10.13203/j.whugis20200595
    [15]
    Huang Z Y, Li S S, Huang L Y, et al. On-orbit Calibration of the KBR Antenna Phase Center of GRACE-type Gravity Satellites[J]. Remote Sensing, 2022, 14(14): 3395. doi: 10.3390/rs14143395
    [16]
    Yi S, Sneeuw N. A Novel Spatial Filter to Reduce North-south Striping Noise in GRACE Spherical Harmonic Coefficients[J]. Journal of Geodesy, 2022, 96(4): 23. doi: 10.1007/s00190-022-01614-z
    [17]
    万晓云, 于锦海, 曾艳艳. GOCE引力梯度的频谱分析及滤波[J]. 地球物理学报, 2012, 55(9): 2909-2916. doi: 10.6038/j.issn.0001-5733.2012.09.010

    Wan Xiaoyun, Yu Jinhai, Zeng Yanyan. Frequency Analysis and Filtering Processing of Gravity Gradients Data from GOCE[J]. Chinese Journal of Geophysics, 2012, 55(9): 2909-2916. doi: 10.6038/j.issn.0001-5733.2012.09.010
    [18]
    Qian N J, Chang G B, Gao J X, et al. Adaptive DDK Filter for GRACE Time-variable Gravity Field with a Novel Anisotropic Filtering Strength Metric[J]. Remote Sensing, 2022, 14(13): 3114. doi: 10.3390/rs14133114
    [19]
    康开轩, 李辉, 吴云龙, 等. 重力卫星精密星间测距系统滤波器技术指标论证[J]. 地球物理学报, 2012, 55(10): 3240-3247. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201210007.htm

    Kang Kaixuan, Li Hui, Wu Yunlong, et al. Demonstration on the Design of Filter Indexes of Inter-satellite High Accuracy Ranging System for Gravity Satellite[J]. Chinese Journal of Geophysics, 2012, 55(10): 3240-3247. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201210007.htm
    [20]
    刘滔, 钟波, 李贤炮, 等. GOCE卫星重力梯度数据反演重力场的滤波器设计与比较分析[J]. 武汉大学学报(信息科学版), 2023, 48(5): 694-701. doi: 10.13203/j.whugis20200705

    Liu Tao, Zhong Bo, Li Xianpao, et al. Filters Design and Comparison of Gravity Field Inversion from GOCE SatelliteGravity Gradient Data[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 694-701. doi: 10.13203/j.whugis20200705
    [21]
    刘晓刚, 吴杉, 王献民, 等. GOCE卫星重力测量中有色噪声滤波器设计[J]. 地球物理学进展, 2012, 27(3): 856-860. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201203005.htm

    Liu Xiaogang, Wu Shan, Wang Xianmin, et al. Design of Color Noise Filter in GOCE Satellite Gravimetry Mission[J]. Progress in Geophysics, 2012, 27(3): 856-860. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201203005.htm
    [22]
    邹贤才, 金涛勇, 朱广彬. 卫星跟踪卫星技术反演局部地表物质迁移的MASCON方法研究[J]. 地球物理学报, 2016, 59(12): 4623-4632. doi: 10.6038/cjg20161223

    Zou Xiancai, Jin Taoyong, Zhu Guangbin. Research on the MASCON Method for the Determination of Local Surface Mass Flux with Satellite-Satellite Tracking Technique[J]. Chinese Journal of Geophysics, 2016, 59(12): 4623-4632. doi: 10.6038/cjg20161223
    [23]
    肖云. 基于卫星跟踪卫星数据恢复地球重力场的研究[D]. 西安: 西安测绘研究所, 2006.

    Xiao Yun. Research on the Earth Gravity Field Recovery from Satellite-to-Satellite Tracking Data[D]. Xi'an: Institute of Surveying and Mapping, 2006.
    [24]
    王长青, 许厚泽, 钟敏, 等. 利用动力学方法解算GRACE时变重力场研究[J]. 地球物理学报, 2015, 58(3): 756-766. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503006.htm

    Wang Changqing, Xu Houze, Zhong Min, et al. An Investigation on GRACE Temporal Gravity Field Recovery Using the Dynamic Approach[J]. Chinese Journal of Geophysics, 2015, 58(3): 756-766. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503006.htm
    [25]
    沈云中. 动力学法的卫星重力反演算法特点与改进设想[J]. 测绘学报, 2017, 46(10): 1308-1315. doi: 10.11947/j.AGCS.2017.20170380

    Shen Yunzhong. Algorithm Characteristics of Dynamic Approach-based Satellite Gravimetry and Its Improvement Proposals[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1308-1315. doi: 10.11947/j.AGCS.2017.20170380
    [26]
    陈秋杰, 沈云中, 张兴福. 基于重力卫星几何轨道线性化的地球重力场反演方法[J]. 地球物理学报, 2013, 56(7): 2238-2244. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307010.htm

    Chen Qiujie, Shen Yunzhong, Zhang Xingfu. Linearization Method of Recovering Earth's Gravity Field with Respect to Gravity Satellite's Kinematic Orbits[J]. Chinese Journal of Geophysics, 2013, 56(7): 2238-2244. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307010.htm
    [27]
    罗志才, 周浩, 李琼, 等. 基于GRACE KBRR数据的动力积分法反演时变重力场模型[J]. 地球物理学报, 2016, 59(6): 1994-2005. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903006.htm

    Luo Zhicai, Zhou Hao, Li Qiong, et al. A New Time-Variable Gravity Field Model Recovered by Dynamic Integral Approach on the Basis of GRACE KBRR Data Alone[J]. Chinese Journal of Geophysics, 2016, 59(6): 1994-2005. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903006.htm
    [28]
    周浩, 罗志才, 周泽兵, 等. 利用卫星跟踪卫星观测数据确定时变重力场球谐解的发展趋势[J]. 地球与行星物理论评, 2022, 53(3): 243-256. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202203001.htm

    Zhou Hao, Luo Zhicai, Zhou Zebing, et al. Pro-gress of Temporal Gravity Field Model Determination in Terms of Spherical Harmonic Coefficients via Satellite-to-Satellite Tracking Observations[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(3): 243-256. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202203001.htm
    [29]
    杨帆, 许厚泽, 钟敏, 等. 利用径向基函数RBF解算GRACE全球时变重力场[J]. 地球物理学报, 2017, 60(4): 1332-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201704009.htm

    Yang Fan, Xu Houze, Zhong Min, et al. GRACE Global Temporal Gravity Recovery Through the Radial Basis Function Approach[J]. Chinese Journal of Geophysics, 2017, 60(4): 1332-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201704009.htm
    [30]
    章传银, 胡建国, 党亚民, 等. 多种跟踪组合卫星重力场恢复方法初探[J]. 武汉大学学报(信息科学版), 2003, 28(S1): 137-141. http://ch.whu.edu.cn/article/id/4888

    Zhang Chuanyin, Hu Jianguo, Dang Yamin, et al. Gravity Field Recovery Method with Several Kinds of Satellite Tracking Data[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 137-141. http://ch.whu.edu.cn/article/id/4888
    [31]
    游为, 范东明, 黄强. 卫星重力反演的短弧长积分法研究[J]. 地球物理学报, 2011, 54(11): 2745-2752. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201111006.htm

    You Wei, Fan Dongming, Huang Qiang. Analysis of Short-arc Integral Approach to Recover the Earth's Gravitational Field[J]. Chinese Journal of Geophysics, 2011, 54(11): 2745-2752. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201111006.htm
    [32]
    游为, 沈云中, 范东明, 等. 基于卫星轨道扰动理论的重力反演算法[J]. 地球物理学报, 2010, 53(11): 2574-2581. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201011008.htm

    You Wei, Shen Yunzhong, Fan Dongming, et al. The Algorithm of Earth's Gravitational Field Recovery Based on Satellite's Orbital Perturbation Theory[J]. Chinese Journal of Geophysics, 2010, 53(11): 2574-2581. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201011008.htm
    [33]
    游为, 范东明, 郭江. 基于能量守恒方法恢复地球重力场模型[J]. 大地测量与地球动力学, 2010, 30(1): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201001012.htm

    You Wei, Fan Dongming, Guo Jiang. Gravity Field Recovery by Using Energy Conservation Approach[J]. Journal of Geodesy and Geodynamics, 2010, 30(1): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201001012.htm
    [34]
    游为, 范东明, 贺全兵. 利用GOCE卫星轨道反演地球重力场模型[J]. 武汉大学学报(信息科学版), 2012, 37(3): 294-297. http://ch.whu.edu.cn/article/id/136

    You Wei, Fan Dongming, He Quanbing. Recovering Earth's Gravitational Field Model Using GOCE Satellite Orbits[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 294-297. http://ch.whu.edu.cn/article/id/136
    [35]
    游为. 球谐分析方法对GRACE大气去混频模型计算的影响[J]. 大地测量与地球动力学, 2017, 37(4): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201704015.htm

    You Wei. Impact of Spherical Harmonic Analysis Methods on the Computation of GRACE Atmos-phere De-aliasing Models[J]. Journal of Geodesy and Geodynamics, 2017, 37(4): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201704015.htm
    [36]
    苏勇, 于冰, 游为, 等. 基于重力卫星数据监测地表质量变化的三维点质量模型法[J]. 地球物理学报, 2017, 60(1): 50-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701006.htm

    Su Yong, Yu Bing, You Wei, et al. Surface Mass Distribution from Gravity Satellite Observations by Using Three-dimensional Point-mass Modeling Approach[J]. Chinese Journal of Geophysics, 2017, 60(1): 50-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701006.htm
    [37]
    周旭华, 许厚泽, 吴斌, 等. 用GRACE卫星跟踪数据反演地球重力场[J]. 地球物理学报, 2006, 49(3): 718-723. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200603015.htm

    Zhou Xuhua, Xu Houze, Wu Bin, et al. Earth's Gravity Field Derived from GRACE Satellite Tracking Data[J]. Chinese Journal of Geophysics, 2006, 49(3): 718-723. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200603015.htm
    [38]
    Wan X Y, Yu J H, Liang L, et al. Analysis of Limitations on Recovery of Gravity Field Based on Satellite Gravity Gradient Data[J]. Geodesy and Geodynamics, 2021, 12(1): 31-42.
    [39]
    Wan X Y, Yu J H. Derivation of the Radial Gradient of the Gravity Based on Non-full Tensor Satellite Gravity Gradients[J]. Journal of Geodynamics, 2013, 66: 59-64.
    [40]
    万晓云. 引力场梯度张量的非奇异公式推导[J]. 武汉大学学报(信息科学版), 2011, 36(12): 1486-1489. http://ch.whu.edu.cn/article/id/732

    Wan Xiaoyun. New Derivation of Nonsingular Expression for Gravitational Gradients Calculation[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1486-1489. http://ch.whu.edu.cn/article/id/732
    [41]
    Ran J J, Ditmar P, Liu L, et al. Analysis and Mitigation of Biases in Greenland Ice Sheet Mass Ba⁃lance Trend Estimates from GRACE Mascon Products[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(7): e2020JB020880.
    [42]
    张兴福, 沈云中. 联合GRACE卫星轨道及距离变率数据反演地球重力场方法研究[J]. 大地测量与地球动力学, 2011, 31(2): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201102015.htm

    Zhang Xingfu, Shen Yunzhong. Method of Gravity Field Inversion with Combining GRACE Orbits and Range-rate Observations[J]. Journal of Geodesy and Geodynamics, 2011, 31(2): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201102015.htm
    [43]
    Li X Y, Long D, Scanlon B R, et al. Climate Change Threatens Terrestrial Water Storage over the Tibetan Plateau[J]. Nature Climate Change, 2022, 12(9): 801-807.
    [44]
    Yi S, Song C Q, Heki K, et al. Satellite-observed Monthly Glacier and Snow Mass Changes in Southeast Tibet: Implication for Substantial Meltwater Contribution to the Brahmaputra[J]. The Cryosphere, 2020, 14(7): 2267-2281.
    [45]
    Ran J J, Vizcaino M, Ditmar P, et al. Seasonal Mass Variations Show Timing and Magnitude of Meltwater Storage in the Greenland Ice Sheet[J]. The Cryosphere, 2018, 12(9): 2981-2999.
    [46]
    Ran J J, Tangdamrongsub N, Shi J C, et al. GRACE Observed Mass Loss in the Middle and Lower Yangtze Basin[J]. Geodesy and Geodynamics, 2019, 10(2): 157-162.
    [47]
    Chang L, Sun W K. Consistency Analysis of GRACE and GRACE-FO Data in the Study of Global Mean Sea Level Change[J]. Geodesy and Geodynamics, 2022, 13(4): 321-326.
    [48]
    张岚, 孙文科. 重力卫星GRACE Mascon产品的应用研究进展与展望[J]. 地球与行星物理论评, 2022, 53(1): 35-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202201003.htm

    Zhang Lan, Sun Wenke. Progress and Prospect of GRACE Mascon Product and Its Application[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(1): 35-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202201003.htm
    [49]
    钟玉龙, 钟敏, 冯伟, 等. 联合GRACE重力卫星与实测资料估计西辽河流域蒸散发量[J]. 武汉大学学报(信息科学版), 2020, 45(2): 173-178. doi: 10.13203/j.whugis20170402

    Zhong Yulong, Zhong Min, Feng Wei, et al. Evaluation of the Evapotranspiration in the West Liaohe River Basin Based on GRACE Satellite and in Situ Measurements[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 173-178. doi: 10.13203/j.whugis20170402
    [50]
    冯伟, 钟敏, 许厚泽. 联合卫星重力、卫星测高和海洋资料研究中国南海海平面变化[J]. 中国科学: 地球科学, 2012, 42(3): 313-319. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201203002.htm

    Feng Wei, Zhong Min, Xu Houze. Sea Level Variations in the South China Sea Inferred from Satellite Gravity, Altimetry, and Oceanographic Data[J]. Scientia Sinica (Terrae), 2012, 42(3): 313-319. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201203002.htm
    [51]
    周新, 孙文科, 付广裕. 重力卫星GRACE检测出2010年智利Mw 8.8地震的同震重力变化[J]. 地球物理学报, 2011, 54(7): 1745-1749. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201107008.htm

    Zhou Xin, Sun Wenke, Fu Guangyu. Gravity Satellite GRACE Detects Coseismic Gravity Changes Caused by 2010 Chile Mw 8.8 Earthquake[J]. Chinese Journal of Geophysics, 2011, 54(7): 1745-1749. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201107008.htm
    [52]
    朱传东, 陆洋, 史红岭, 等. 基于GRACE数据的格陵兰冰盖质量变化研究[J]. 海洋测绘, 2013, 33(4): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201304009.htm

    Zhu Chuandong, Lu Yang, Shi Hongling, et al. Quality Changes of the Greenland Ice Sheet Based on GRACE Satellite Data[J]. Hydrographic Surveying and Charting, 2013, 33(4): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201304009.htm
    [53]
    冯贵平, 王其茂, 宋清涛. 基于GRACE卫星重力数据估计格陵兰岛冰盖质量变化[J]. 海洋学报, 2018, 40(11): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201811008.htm

    Feng Guiping, Wang Qimao, Song Qingtao. Greenland Ice Sheet Mass Variations Based on GRACE Satellite Gravity Data[J]. Haiyang Xuebao, 2018, 40(11): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201811008.htm
    [54]
    超能芳, 王正涛, 晁定波, 等. 格陵兰岛冰盖质量变化趋势最优非线性模型的建立[J]. 测绘科学, 2014, 39(8): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201408029.htm

    Chao Nengfang, Wang Zhengtao, Chao Dingbo, et al. Establishment of Optimal Nonlinear Model on Mass-change Trends over Greenland Ice Sheets[J]. Science of Surveying and Mapping, 2014, 39(8): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201408029.htm
    [55]
    杨元德, 鄂栋臣, 晁定波. 利用GRACE数据反演格陵兰冰盖冰雪质量变化[J]. 武汉大学学报(信息科学版), 2009, 34(8): 961-964. http://ch.whu.edu.cn/article/id/1329

    Yang Yuande, E Dongchen, Chao Dingbo. The Inversion of Ice Mass Change in Greenland Ice Sheet Using GRACE Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 961-964. http://ch.whu.edu.cn/article/id/1329
    [56]
    韩建成, 陈石, 卢红艳, 等. 基于Slepian方法和地面重力观测确定时变重力场模型: 以2011—2013年华北地区数据为例[J]. 地球物理学报, 2021, 64(5): 1542-1557. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202105006.htm

    Han Jiancheng, Chen Shi, Lu Hongyan, et al. Time-variable Gravity Field Determination Using Slepian Functions and Terrestrial Measurements: A Case Study in North China with Data from 2011 to 2013[J]. Chinese Journal of Geophysics, 2021, 64(5): 1542-1557. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202105006.htm
    [57]
    束秋妍, 潘云, 宫辉力, 等. 基于GRACE的华北平原地下水储量时空变化分析[J]. 国土资源遥感, 2018, 30(2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201802018.htm

    Shu Qiuyan, Pan Yun, Gong Huili, et al. Spatiotemporal Analysis of GRACE-based Groundwater Storage Variation in North China Plain[J]. Remote Sensing for Land & Resources, 2018, 30(2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201802018.htm
    [58]
    王林松, 陈超, 马险, 等. 冰盖消融的海平面指纹变化及其对GRACE监测结果的影响[J]. 地球物理学报, 2018, 61(7): 2679-2690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201807004.htm

    Wang Linsong, Chen Chao, Ma Xian, et al. Sea Level Fingerprints of Ice Sheet Melting and Its Impacts on Monitoring Results of GRACE[J]. Chinese Journal of Geophysics, 2018, 61(7): 2679-2690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201807004.htm
    [59]
    郭金运, 于学敏, 孔巧丽, 等. 基于GRACE卫星数据的低阶重力场时变分析[J]. 地球物理学进展, 2015, 30(3): 1002-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503003.htm

    Guo Jinyun, Yu Xuemin, Kong Qiaoli, et al. Analysis of Low Degree Gravity Changes from GRACE Gravity Field Model[J]. Progress in Geophysics, 2015, 30(3): 1002-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503003.htm
    [60]
    李琼, 罗志才, 钟波, 等. 利用GRACE时变重力场探测2010年中国西南干旱陆地水储量变化[J]. 地球物理学报, 2013, 56(6): 1843-1849. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306007.htm

    Li Qiong, Luo Zhicai, Zhong Bo, et al. Terrestrial Water Storage Changes of the 2010 Southwest China Drought Detected by GRACE Temporal Gravity Field[J]. Chinese Journal of Geophysics, 2013, 56(6): 1843-1849. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306007.htm
    [61]
    汪汉胜, 王志勇, 袁旭东, 等. 基于GRACE时变重力场的三峡水库补给水系水储量变化[J]. 地球物理学报, 2007, 50(3): 730-736. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200703010.htm

    Wang Hansheng, Wang Zhiyong, Yuan Xudong, et al. Water Storage Changes in Three Gorges Water Systems Area Inferred from GRACE Time-variable Gravity Data[J]. Chinese Journal of Geophysics, 2007, 50(3): 730-736. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200703010.htm
    [62]
    叶叔华, 苏晓莉, 平劲松, 等. 基于GRACE卫星测量得到的中国及其周边地区陆地水量变化[J]. 吉林大学学报(地球科学版), 2011, 41(5): 1580-1586. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201105036.htm

    Ye Shuhua, Su Xiaoli, Ping Jinsong, et al. Land Water Storage Variations in China and Adjacent Areas Revealed by the GRACE Gravity Mission[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5): 1580-1586. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201105036.htm
    [63]
    祝意青, 张勇, 杨雄, 等. 时变重力在地震研究方面的进展与展望[J]. 地球与行星物理论评, 2022, 53(3): 278-291. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202203004.htm

    Zhu Yiqing, Zhang Yong, Yang Xiong, et al. Pro-gress of Time-varying Gravity in Seismic Research[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(3): 278-291. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202203004.htm
    [64]
    Gruber T, Murböck M, Nggm D T. e. motion2 — Earth System Mass Transport Mission (Square) — Concept for a Next Generation Gravity Field Mission[R]. Czech: Institut für Astronomische und Physikalische Geodäsie, 2014.
    [65]
    Pail R, Bamber J, Biancale R, et al. Mass Variation Observing System by High Low Inter-satellite Links (MOBILE) - A New Concept for Sustained Observation of Mass Transport from Space[J]. Journal of Geodetic Science, 2019, 9(1): 48-58.
    [66]
    Migliaccio F, Reguzzoni M, Batsukh K, et al. MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field[J]. Surveys in Geophysics, 2019, 40(5): 1029-1053.
    [67]
    Flechtner F M. Realization of a Satellite Mission "GRACE-I" for Parallel Observation of Changing Global Water Resources and Biodiversity[C]//The AGU Fall Meeting, San Francisco, USA, 2020.
    [68]
    Anthony N, Archimbaud M, Beeck S, et al. GRAVL: Gravity observations by Vertical Laser Ranging[R]. Tyrol, Austria: Team Green, Alpbach Summer School, 2019.
    [69]
    Lévèque T, Fallet C, Mandea M, et al. Gravity Field Mapping Using Laser-coupled Quantum Accelerometers in Space[J]. Journal of Geodesy, 2021, 95(1): 15.
    [70]
    Massotti L, Amata G B, Anselmi A, et al. Next Generation Gravity Mission: Status of the Design and Discussion on Alternative Drag Compensation Scenarios[C]//Conference on Sensors, Systems, and Next-Generation Satellites XXIV, Paris, France, 2020.
    [71]
    Wiese D N, Bienstock B, Blackwood C, et al. The Mass Change Designated Observable Study: Overview and Results[J]. Earth and Space Science, 2022, 9(8): e2022EA002311.
    [72]
    宁津生, 王正涛, 超能芳. 国际新一代卫星重力探测计划研究现状与进展[J]. 武汉大学学报(信息科学版), 2016, 41(1): 1-8. doi: 10.13203/j.whugis20150732

    Ning Jinsheng, Wang Zhengtao, Chao Nengfang. Research Status and Progress in International Next-generation Satellite Gravity Measurement Missions[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 1-8. doi: 10.13203/j.whugis20150732
    [73]
    Reigber C, Schwintzer P, Neumayer K H, et al. The CHAMP-only Earth Gravity Field Model EIGEN-2[J]. Advances in Space Research, 2003, 31(8): 1883-1888.
    [74]
    van den Ijssel J, Visser P, Rodriguez E P. Champ Precise Orbit Determination Using GPS Data[J]. Advances in Space Research, 2003, 31(8): 1889-1895.
    [75]
    Baur O. Greenland Mass Variation from Time-variable Gravity in the Absence of GRACE[J]. Geophysical Research Letters, 2013, 40(16): 4289-4293.
    [76]
    Flechtner F M, Sneeuw N, Schuh W D. Observation of the System Earth from Space — CHAMP, GRACE, GOCE and Future Missions[M]. Berlin: Springer, 2014.
    [77]
    Tapley B D, Bettadpur S, Watkins M, et al. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results[J]. Geophysical Research Letters, 2004, 31(9): L09607.
    [78]
    Chen J L, Cazenave A, Dahle C, et al. Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry[J]. Surveys in Geophysics, 2022, 43(1): 305-345.
    [79]
    Rodell M, Famiglietti J S, Wiese D N, et al. Emerging Trends in Global Freshwater Availability[J]. Nature, 2018, 557(7707): 651-659.
    [80]
    Ran J, Ditmar P, Klees R, et al. Statistically Optimal Estimation of Greenland Ice Sheet Mass Variations from GRACE Monthly Solutions Using an Improved Mascon Approach[J]. Journal of Geodesy, 2018, 92(3): 299-319.
    [81]
    Han S C, Sauber J, Luthcke S B, et al. Implications of Postseismic Gravity Change Following the Great 2004 Sumatra-Andaman Earthquake from the Regional Harmonic Analysis of GRACE Intersatellite Tracking Data[J]. Journal of Geophysical Research, 2008, 113(B11): B11413.
    [82]
    Reubelt T, Sneeuw N, Iran Pour S, et al. The ESA Project SC4MGV" Assessment of Satellite Constellations for Monitoring the Variations in Earth's Gravity Field"―Overview, Objectives and First Results[C]//The EGU General Assembly Conference, Vienna, 2014.
    [83]
    Wahr J, Molenaar M, Bryan F. Time Variability of the Earth's Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229.
    [84]
    Swenson S, Wahr J. Post-processing Removal of Correlated Errors in GRACE Data[J]. Geophysical Research Letters, 2006, 33(8): L08402.
    [85]
    Klees R, Revtova E A, Gunter B C, et al. The Design of an Optimal Filter for Monthly GRACE Gravity Models[J]. Geophysical Journal International, 2008, 175(2): 417-432.
    [86]
    Kusche J, Schmidt R, Petrovic S, et al. Decorrelated GRACE Time-variable Gravity Solutions by GFZ, and Their Validation Using a Hydrological Model[J]. Journal of Geodesy, 2009, 83(10): 903-913.
    [87]
    Floberghagen R, Fehringer M, Lamarre D, et al. Mission Design, Operation and Exploitation of the Gravity Field and Steady-state Ocean Circulation Explorer Mission[J]. Journal of Geodesy, 2011, 85(11): 749-758.
    [88]
    Brockmann J M, Schubert T, Schuh W D. An Improved Model of the Earth's Static Gravity Field Solely Derived from Reprocessed GOCE Data[J]. Surveys in Geophysics, 2021, 42(2): 277-316.
    [89]
    Massonnet D. The Interferometric Cartwheel: A Constellation of Passive Satellites to Produce Radar Images to be Coherently Combined[J]. International Journal of Remote Sensing, 2001, 22(12): 2413-2430.
    [90]
    Farahani H H, Ditmar P, Klees R. Assessment of the Added Value of Data from the GOCE Satellite Mission to Time-varying Gravity Field Modelling[J]. Journal of Geodesy, 2014, 88(2): 157-178.
    [91]
    Landerer F W, Flechtner F M, Save H, et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance[J]. Geophysical Research Letters, 2020, 47(12): e2020GL088306.
    [92]
    Flury J, Bettadpur S, Tapley B D. Precise Accelerometry Onboard the GRACE Gravity Field Satellite Mission[J]. Advances in Space Research, 2008, 42(8): 1414-1423.
    [93]
    Flechtner F, Morton P, Watkins M, et al. Status of the GRACE Follow-On Mission[C]//The IAG 5th International Symposium on Gravity, Geoid and Height Systems (GGHS), Venice, Italy, 2012.
    [94]
    Sheard B S, Heinzel G, Danzmann K, et al. Intersatellite Laser Ranging Instrument for the GRACE Follow-On Mission[J]. Journal of Geodesy, 2012, 86(12): 1083-1095.
    [95]
    Wickert J, Michalak G, Schmidt T, et al. GPS Radio Occultation: Results from CHAMP, GRACE and FORMOSAT-3/COSMIC[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2009, 20(1): 35-50.
    [96]
    Flechtner F, Neumayer K H, Dahle C, et al. What can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications?[J]. Surveys in Geophysics, 2016, 37(2): 453-470.
    [97]
    Purkhauser A F, Pail R. Triple-pair Constellation Configurations for Temporal Gravity Field Retrieval[J]. Remote Sensing, 2020, 12(5): 831.
    [98]
    Weigelt M, Dam T, Jäggi A, et al. Time-variable Gravity Signal in Greenland Revealed by High-Low Satellite-to-Satellite Tracking[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(7): 3848-3859.
    [99]
    Mayer-Gürr T, Behzadpour S, Kvas A, et al. ITSG-Grace2018: Monthly, Daily and Static Gravity Field Solutions from GRACE[EB/OL]. (2018-12-4) GFZ Data Services. https://doi.org/10.5880/ICGEM.2018.003
    [100]
    Sharifi M, Sneeuw N, Keller W. Gravity Recovery Capability of Four Generic Satellite Formations[J]. Gravity Field of the Earth General Command of Mapping, 2007, 21(5): 130-157.
    [101]
    Bender P L, Wiese D N, Nerem R S. A Possible Dual-GRACE Mission with 90 Degree and 63 Degree Inclination Orbits[C]//The 3rd International Symposium on Formation Flying, Missions and Technologies European Space Agency Symposium, Noordwijk, 2008.
    [102]
    Bar-Sever Y, Haines B, Bertiger W, et al. Geode-tic Reference Antenna in Space (GRASP)—A Mission to Enhance Space-Based Geodesy[C]//The COSPAR Colloquium: Scientific and Fundamental Aspects of the Galileo Program, Padua, Italy, 2009.
    [103]
    Biancale R, Pollet A, Coulot D, et al. E-GRASP/Eratosthenes: A Mission Proposal for Millimetric TRF Realization[C]//The EGU General Assembly Conference, Vienna, 2017.
    [104]
    Lemoine J, Mandea M. The MARVEL Gravity and Reference Frame Mission Proposal[C]//The EGU General Assembly Conference, Paris, France, 2020.
    [105]
    Massotti L, Siemes C, March G, et al. Next Gene-ration Gravity Mission Elements of the Mass Change and Geoscience International Constellation: From Orbit Selection to Instrument and Mission Design[J]. Remote Sensing, 2021, 13(19): 3935.
    [106]
    Hauk M, Schlicht A, Pail R, et al. Gravity Field Recovery in the Framework of a Geodesy and Time Reference in Space (GETRIS)[J]. Advances in Space Research, 2017, 59(8): 2032-2047.
    [107]
    Wiese D N, Nerem R S, Lemoine F G. Design Considerations for a Dedicated Gravity Recovery Satellite Mission Consisting of Two Pairs of Satellites[J]. Journal of Geodesy, 2012, 86(2): 81-98.
    [108]
    姜卫平, 赵伟, 赵倩, 等. 新一代探测地球重力场的卫星编队[J]. 测绘学报, 2014, 43(2): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201402002.htm

    Jiang Weiping, Zhao Wei, Zhao Qian, et al. Satellite Formation for a New Gravity Field Exploration Mission[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201402002.htm
    [109]
    Murböck M, Pail R, Daras I, et al. Optimal Orbits for Temporal Gravity Recovery Regarding Temporal Aliasing[J]. Journal of Geodesy, 2014, 88(2): 113-126.
    [110]
    Wiese D N, Visser P, Nerem R S. Estimating Low Resolution Gravity Fields at Short Time Intervals to Reduce Temporal Aliasing Errors[J]. Advances in Space Research, 2011, 48(6): 1094-1107.
  • Related Articles

    [1]XIAO Yun, LI Yan, ZHOU Zebing, PAN Zongpeng, HUANG Lingyong, WU Baofeng, ZHOU Hao, WANG Libing, HUANG Zhiyong, XU Baopeng. Progress on the Chinese Gravimetry Satellite Missions[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240466
    [2]LUO Zhicai, ZHONG Bo, ZHOU Hao, WU Yunlong. Progress in Determining the Earth's Gravity Field Model by Satellite Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1713-1727. DOI: 10.13203/j.whugis20220537
    [3]XIAO Yun, WANG Yunpeng, LIU Xiaogang, XU Yunyan. Application of Space-Wise Least Square Method to Error Analysis for Satellite Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 340-346. DOI: 10.13203/j.whugis20170376
    [4]NING Jinsheng, WANG Zhengtao, CHAO Nengfang. Research Status and Progress in International Next-Generation Satellite Gravity Measurement Missions[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 1-8. DOI: 10.13203/j.whugis20150732
    [5]XU Zhengquan, MAO Tengyue, ZHU Rongbo, HOU Rui. Researching Review on Key Technologies of Next Generation Satellite Networks[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1009-1013.
    [6]LUO Jia, NING Jinsheng. Analysis of Time-Variable Gravity Field Exploring Performance with LEO Cluster[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 636-638.
    [7]ZHOU Xuhua, WU Bin, PENG Bibo, XU Houze. Earth's Gravity Field Recovered from CHAMP Science Orbit and Accelerometer Data[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 172-175.
    [8]NING Jingsheng. Following the Developments of the World,Devoting to the Study on the Earth Gravity Field[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6): 471-474,486.
    [9]Ning Jinsheng. Developing the Earth's Gravity Field Approximation Theory[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 310-313,286.
    [10]Ning Jinsheng, Luo Zhicai, Chao Dingbo. The Present Situation on Satellite Gravity Gradiometry and Its Vistas in the Application of Physical Geodesy[J]. Geomatics and Information Science of Wuhan University, 1996, 21(4): 309-314.
  • Cited by

    Periodical cited type(12)

    1. 蒲伦,游为,余彪,范东明. 基于优化预处理方法的时变重力场反演精度分析. 大地测量与地球动力学. 2025(01): 72-79 .
    2. 温志强,唐河,孙文科. 实际地形面上的负荷重力效应近似计算. 地球物理学报. 2025(02): 444-455 .
    3. 张锦绣,陶文舰,连晓斌,王继河,孟云鹤,刘源. 空间引力波探测无拖曳技术现状与趋势. 国防科技大学学报. 2024(02): 1-17 .
    4. 尹智,张克非,段亚博,刘军生,穆庆禄. 地球科学和深空探测的引力场建模理论研究进展. 地球与行星物理论评(中英文). 2024(05): 501-512 .
    5. 李婉秋,郭秋英,章传银,王伟,钟玉龙,李伟,徐鹏飞. 利用独立成分分析法研究新疆地区陆地水储量及其地壳垂向变化. 武汉大学学报(信息科学版). 2024(05): 794-804 .
    6. 曹杰,肖云,龙笛,崔英杰,刘淼,张锦柏,王宇康,洪晓东,陈垲宁. 联合重力卫星和水井资料监测华北平原地下水储量变化. 武汉大学学报(信息科学版). 2024(05): 805-818 .
    7. 郭丁昊,王长青,朱紫彤,熊宇昊,杨萌,钟敏,沈云中,陈秋杰,冯伟. 多卫星星座对时变重力场反演精度和时空分辨率影响的模拟研究. 地球物理学报. 2024(06): 2125-2140 .
    8. 瞿伟,陈沛男,张普方,唐兴友,李久元. GRACE/GRACE-FO揭示黄河上游2002-2022年GWS及可持续性时空演化. 武汉大学学报(信息科学版). 2024(08): 1287-1299+1336 .
    9. 苏勇,李建成,徐新禹,王长青,余彪,李琼,谷延超. 重力卫星数据反演地表质量变化的点质量模型法研究进展. 武汉大学学报(信息科学版). 2024(09): 1503-1516 .
    10. 屈少波,白彦峥,刘力,马云,王梁,吴书朝,于健博,周泽兵. 空间静电加速度计地面测试方法、技术与应用. 武汉大学学报(信息科学版). 2024(11): 2028-2036 .
    11. 王凤彬,赵淑红. 基于卫星轨道数据的地球重力场反演方法研究. 先进小卫星技术(中英文). 2024(05): 31-38 .
    12. 褚江东,粟晓玲,姜田亮,胡雪雪,张特,吴海江. GRACE数据反演水储量及监测干旱的应用现状与展望. 遥感技术与应用. 2023(05): 1003-1016 .

    Other cited types(3)

Catalog

    Article views (1771) PDF downloads (320) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return