Citation: | RAN Jiangjun, YAN Zhengwen, WU Yunlong, ZHONG Min, XIAO Yun, LOU Lizhi, WANG Changqing. Research Status and Future Perspectives in Next Generation Gravity Mission[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 841-857. DOI: 10.13203/j.whugis20220629 |
[1] |
宁津生. 卫星重力探测技术与地球重力场研究[J]. 大地测量与地球动力学, 2002, 22(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200201000.htm
Ning Jinsheng. The Satellite Gravity Surveying Technology and Research of Earth's Gravity Field[J]. Journal of Geodesy and Geodynamics, 2002, 22(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200201000.htm
|
[2] |
闫政文, 谭捍东, 彭淼, 等. 基于交叉梯度约束的重力、磁法和大地电磁三维联合反演[J]. 地球物理学报, 2020, 63(2): 736-752. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202002040.htm
Yan Zhengwen, Tan Handong, Peng Miao, et al. Three-dimensional Joint Inversion of Gravity, Magnetic and Magnetotelluric Data Based on Cross-gradient Theory[J]. Chinese Journal of Geophysics, 2020, 63(2): 736-752. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202002040.htm
|
[3] |
胡敏章, 李建成, 金涛勇, 等. 联合多源数据确定中国海及周边海底地形模型[J]. 武汉大学学报(信息科学版), 2015, 40(9): 1266-1273. doi: 10.13203/j%20.whu%20g%20is20130700
Hu Minzhang, Li Jiancheng, Jin Taoyong, et al. Recovery of Bathymetry over China Sea and Its Adjacent Areas by Combination of Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1266-1273. doi: 10.13203/j%20.whu%20g%20is20130700
|
[4] |
郭良辉, 孟小红, 石磊, 等. 优化滤波方法及其在中国大陆布格重力异常数据处理中的应用[J]. 地球物理学报, 2012, 55(12): 4078-4088. doi: 10.6038/j.issn.0001-5733.2012.12.020
Guo Lianghui, Meng Xiaohong, Shi Lei, et al. Pre-ferential Filtering Method and Its Application to Bouguer Gravity Anomaly of Chinese Continent[J]. Chinese Journal of Geophysics, 2012, 55(12): 4078-4088. doi: 10.6038/j.issn.0001-5733.2012.12.020
|
[5] |
孙文科. 低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场: 卫星重力大地测量的最新发展及其对地球科学的重大影响[J]. 大地测量与地球动力学, 2002, 22(1): 92-100. doi: 10.3969/j.issn.1671-5942.2002.01.017
Sun Wenke. Satellite In Low Orbit(CHAMP, GRACE, GOCE) and High Precision Earth Gravity Field: The Latest Progress of Satellite Gravity Geodesy and Its Great Influence on Geoscience[J]. Journal of Geodesy and Geodynamics, 2002, 22(1): 92-100. doi: 10.3969/j.issn.1671-5942.2002.01.017
|
[6] |
宁津生, 王正涛. 地球重力场研究现状与进展[J]. 测绘地理信息, 2013, 38(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201301003.htm
Ning Jinsheng, Wang Zhengtao. Progress and Present Status of Research on Earth's Gravitational Field[J]. Journal of Geomatics, 2013, 38(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201301003.htm
|
[7] |
Panet I, Flury J, Biancale R, et al. Earth System Mass Transport Mission (e. motion): A Concept for Future Earth Gravity Field Measurements from Space[J]. Surveys in Geophysics, 2013, 34(2): 141-163. doi: 10.1007/s10712-012-9209-8
|
[8] |
冉将军, 钟敏, 许厚泽, 等. 模拟分析低低跟踪模式重力卫星反演地球重力场的精度[J]. 地球物理学报, 2015, 58(10): 3487-3495. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510005.htm
Ran Jiangjun, Zhong Min, Xu Houze, et al. Analysis of the Gravity Field Recovery Accuracy from the Low-Low Satellite-to-Satellite Tracking Mission[J]. Chinese Journal of Geophysics, 2015, 58(10): 3487-3495. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201510005.htm
|
[9] |
冉将军, 许厚泽, 沈云中, 等. 新一代GRACE重力卫星反演地球重力场的预期精度[J]. 地球物理学报, 2012, 55(9): 2898-2908. doi: 10.6038/j.issn.0001-5733.2012.09.009
Ran Jiangjun, Xu Houze, Shen Yunzhong, et al. Expected Accuracy of the Global Gravity Field for Next GRACE Satellite Gravity Mission[J]. Chinese Journal of Geophysics, 2012, 55(9): 2898-2908. doi: 10.6038/j.issn.0001-5733.2012.09.009
|
[10] |
Zhou H, Luo Z C, Zhou Z B, et al. What can we Expect from the Inclined Satellite Formation for Temporal Gravity Field Determination?[J]. Surveys in Geophysics, 2021, 42(3): 699-726. doi: 10.1007/s10712-021-09641-9
|
[11] |
邹贤才, 李建成, 衷路萍, 等. 动力法校准GRACE星载加速度计[J]. 武汉大学学报(信息科学版), 2015, 40(3): 357-360. http://ch.whu.edu.cn/article/id/3210
Zou Xiancai, Li Jiancheng, Zhong Luping, et al. Calibration of the Accelerometers Onboard GRACE with the Dynamic Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 357-360. http://ch.whu.edu.cn/article/id/3210
|
[12] |
吴云龙, 郭泽华, 肖云, 等. 卫星重力梯度观测数据L1级构建方法[J]. 地球物理学报, 2021, 64(12): 4437-4448. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202112016.htm
Wu Yunlong, Guo Zehua, Xiao Yun, et al. L1 Level Construction Method of Satellite Gravity Gradiometry Observations[J]. Chinese Journal of Geophysics, 2021, 64(12): 4437-4448. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202112016.htm
|
[13] |
牛晗晗, 王长青, 钟敏, 等. GRACE-FO加速度计校正方法研究[J]. 大地测量与地球动力学, 2021, 41(10): 998-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202110002.htm
Niu Hanhan, Wang Changqing, Zhong Min, et al. Research on Calibration Method of GRACE-FO Accelerometer[J]. Journal of Geodesy and Geodynamics, 2021, 41(10): 998-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202110002.htm
|
[14] |
郭泽华, 吴云龙, 肖云, 等. 联合星象仪四元数的卫星重力梯度测量角速度重建方法[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1336-1344. doi: 10.13203/j.whugis20200595
Guo Zehua, Wu Yunlong, Xiao Yun, et al. Reconstruction Method of Satellite Gravity Gradient Measurement Angular Velocity by Combining Star Tracker Quaternion[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1336-1344. doi: 10.13203/j.whugis20200595
|
[15] |
Huang Z Y, Li S S, Huang L Y, et al. On-orbit Calibration of the KBR Antenna Phase Center of GRACE-type Gravity Satellites[J]. Remote Sensing, 2022, 14(14): 3395. doi: 10.3390/rs14143395
|
[16] |
Yi S, Sneeuw N. A Novel Spatial Filter to Reduce North-south Striping Noise in GRACE Spherical Harmonic Coefficients[J]. Journal of Geodesy, 2022, 96(4): 23. doi: 10.1007/s00190-022-01614-z
|
[17] |
万晓云, 于锦海, 曾艳艳. GOCE引力梯度的频谱分析及滤波[J]. 地球物理学报, 2012, 55(9): 2909-2916. doi: 10.6038/j.issn.0001-5733.2012.09.010
Wan Xiaoyun, Yu Jinhai, Zeng Yanyan. Frequency Analysis and Filtering Processing of Gravity Gradients Data from GOCE[J]. Chinese Journal of Geophysics, 2012, 55(9): 2909-2916. doi: 10.6038/j.issn.0001-5733.2012.09.010
|
[18] |
Qian N J, Chang G B, Gao J X, et al. Adaptive DDK Filter for GRACE Time-variable Gravity Field with a Novel Anisotropic Filtering Strength Metric[J]. Remote Sensing, 2022, 14(13): 3114. doi: 10.3390/rs14133114
|
[19] |
康开轩, 李辉, 吴云龙, 等. 重力卫星精密星间测距系统滤波器技术指标论证[J]. 地球物理学报, 2012, 55(10): 3240-3247. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201210007.htm
Kang Kaixuan, Li Hui, Wu Yunlong, et al. Demonstration on the Design of Filter Indexes of Inter-satellite High Accuracy Ranging System for Gravity Satellite[J]. Chinese Journal of Geophysics, 2012, 55(10): 3240-3247. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201210007.htm
|
[20] |
刘滔, 钟波, 李贤炮, 等. GOCE卫星重力梯度数据反演重力场的滤波器设计与比较分析[J]. 武汉大学学报(信息科学版), 2023, 48(5): 694-701. doi: 10.13203/j.whugis20200705
Liu Tao, Zhong Bo, Li Xianpao, et al. Filters Design and Comparison of Gravity Field Inversion from GOCE SatelliteGravity Gradient Data[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 694-701. doi: 10.13203/j.whugis20200705
|
[21] |
刘晓刚, 吴杉, 王献民, 等. GOCE卫星重力测量中有色噪声滤波器设计[J]. 地球物理学进展, 2012, 27(3): 856-860. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201203005.htm
Liu Xiaogang, Wu Shan, Wang Xianmin, et al. Design of Color Noise Filter in GOCE Satellite Gravimetry Mission[J]. Progress in Geophysics, 2012, 27(3): 856-860. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201203005.htm
|
[22] |
邹贤才, 金涛勇, 朱广彬. 卫星跟踪卫星技术反演局部地表物质迁移的MASCON方法研究[J]. 地球物理学报, 2016, 59(12): 4623-4632. doi: 10.6038/cjg20161223
Zou Xiancai, Jin Taoyong, Zhu Guangbin. Research on the MASCON Method for the Determination of Local Surface Mass Flux with Satellite-Satellite Tracking Technique[J]. Chinese Journal of Geophysics, 2016, 59(12): 4623-4632. doi: 10.6038/cjg20161223
|
[23] |
肖云. 基于卫星跟踪卫星数据恢复地球重力场的研究[D]. 西安: 西安测绘研究所, 2006.
Xiao Yun. Research on the Earth Gravity Field Recovery from Satellite-to-Satellite Tracking Data[D]. Xi'an: Institute of Surveying and Mapping, 2006.
|
[24] |
王长青, 许厚泽, 钟敏, 等. 利用动力学方法解算GRACE时变重力场研究[J]. 地球物理学报, 2015, 58(3): 756-766. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503006.htm
Wang Changqing, Xu Houze, Zhong Min, et al. An Investigation on GRACE Temporal Gravity Field Recovery Using the Dynamic Approach[J]. Chinese Journal of Geophysics, 2015, 58(3): 756-766. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503006.htm
|
[25] |
沈云中. 动力学法的卫星重力反演算法特点与改进设想[J]. 测绘学报, 2017, 46(10): 1308-1315. doi: 10.11947/j.AGCS.2017.20170380
Shen Yunzhong. Algorithm Characteristics of Dynamic Approach-based Satellite Gravimetry and Its Improvement Proposals[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1308-1315. doi: 10.11947/j.AGCS.2017.20170380
|
[26] |
陈秋杰, 沈云中, 张兴福. 基于重力卫星几何轨道线性化的地球重力场反演方法[J]. 地球物理学报, 2013, 56(7): 2238-2244. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307010.htm
Chen Qiujie, Shen Yunzhong, Zhang Xingfu. Linearization Method of Recovering Earth's Gravity Field with Respect to Gravity Satellite's Kinematic Orbits[J]. Chinese Journal of Geophysics, 2013, 56(7): 2238-2244. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307010.htm
|
[27] |
罗志才, 周浩, 李琼, 等. 基于GRACE KBRR数据的动力积分法反演时变重力场模型[J]. 地球物理学报, 2016, 59(6): 1994-2005. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903006.htm
Luo Zhicai, Zhou Hao, Li Qiong, et al. A New Time-Variable Gravity Field Model Recovered by Dynamic Integral Approach on the Basis of GRACE KBRR Data Alone[J]. Chinese Journal of Geophysics, 2016, 59(6): 1994-2005. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903006.htm
|
[28] |
周浩, 罗志才, 周泽兵, 等. 利用卫星跟踪卫星观测数据确定时变重力场球谐解的发展趋势[J]. 地球与行星物理论评, 2022, 53(3): 243-256. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202203001.htm
Zhou Hao, Luo Zhicai, Zhou Zebing, et al. Pro-gress of Temporal Gravity Field Model Determination in Terms of Spherical Harmonic Coefficients via Satellite-to-Satellite Tracking Observations[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(3): 243-256. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202203001.htm
|
[29] |
杨帆, 许厚泽, 钟敏, 等. 利用径向基函数RBF解算GRACE全球时变重力场[J]. 地球物理学报, 2017, 60(4): 1332-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201704009.htm
Yang Fan, Xu Houze, Zhong Min, et al. GRACE Global Temporal Gravity Recovery Through the Radial Basis Function Approach[J]. Chinese Journal of Geophysics, 2017, 60(4): 1332-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201704009.htm
|
[30] |
章传银, 胡建国, 党亚民, 等. 多种跟踪组合卫星重力场恢复方法初探[J]. 武汉大学学报(信息科学版), 2003, 28(S1): 137-141. http://ch.whu.edu.cn/article/id/4888
Zhang Chuanyin, Hu Jianguo, Dang Yamin, et al. Gravity Field Recovery Method with Several Kinds of Satellite Tracking Data[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 137-141. http://ch.whu.edu.cn/article/id/4888
|
[31] |
游为, 范东明, 黄强. 卫星重力反演的短弧长积分法研究[J]. 地球物理学报, 2011, 54(11): 2745-2752. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201111006.htm
You Wei, Fan Dongming, Huang Qiang. Analysis of Short-arc Integral Approach to Recover the Earth's Gravitational Field[J]. Chinese Journal of Geophysics, 2011, 54(11): 2745-2752. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201111006.htm
|
[32] |
游为, 沈云中, 范东明, 等. 基于卫星轨道扰动理论的重力反演算法[J]. 地球物理学报, 2010, 53(11): 2574-2581. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201011008.htm
You Wei, Shen Yunzhong, Fan Dongming, et al. The Algorithm of Earth's Gravitational Field Recovery Based on Satellite's Orbital Perturbation Theory[J]. Chinese Journal of Geophysics, 2010, 53(11): 2574-2581. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201011008.htm
|
[33] |
游为, 范东明, 郭江. 基于能量守恒方法恢复地球重力场模型[J]. 大地测量与地球动力学, 2010, 30(1): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201001012.htm
You Wei, Fan Dongming, Guo Jiang. Gravity Field Recovery by Using Energy Conservation Approach[J]. Journal of Geodesy and Geodynamics, 2010, 30(1): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201001012.htm
|
[34] |
游为, 范东明, 贺全兵. 利用GOCE卫星轨道反演地球重力场模型[J]. 武汉大学学报(信息科学版), 2012, 37(3): 294-297. http://ch.whu.edu.cn/article/id/136
You Wei, Fan Dongming, He Quanbing. Recovering Earth's Gravitational Field Model Using GOCE Satellite Orbits[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 294-297. http://ch.whu.edu.cn/article/id/136
|
[35] |
游为. 球谐分析方法对GRACE大气去混频模型计算的影响[J]. 大地测量与地球动力学, 2017, 37(4): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201704015.htm
You Wei. Impact of Spherical Harmonic Analysis Methods on the Computation of GRACE Atmos-phere De-aliasing Models[J]. Journal of Geodesy and Geodynamics, 2017, 37(4): 397-402. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201704015.htm
|
[36] |
苏勇, 于冰, 游为, 等. 基于重力卫星数据监测地表质量变化的三维点质量模型法[J]. 地球物理学报, 2017, 60(1): 50-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701006.htm
Su Yong, Yu Bing, You Wei, et al. Surface Mass Distribution from Gravity Satellite Observations by Using Three-dimensional Point-mass Modeling Approach[J]. Chinese Journal of Geophysics, 2017, 60(1): 50-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701006.htm
|
[37] |
周旭华, 许厚泽, 吴斌, 等. 用GRACE卫星跟踪数据反演地球重力场[J]. 地球物理学报, 2006, 49(3): 718-723. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200603015.htm
Zhou Xuhua, Xu Houze, Wu Bin, et al. Earth's Gravity Field Derived from GRACE Satellite Tracking Data[J]. Chinese Journal of Geophysics, 2006, 49(3): 718-723. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200603015.htm
|
[38] |
Wan X Y, Yu J H, Liang L, et al. Analysis of Limitations on Recovery of Gravity Field Based on Satellite Gravity Gradient Data[J]. Geodesy and Geodynamics, 2021, 12(1): 31-42.
|
[39] |
Wan X Y, Yu J H. Derivation of the Radial Gradient of the Gravity Based on Non-full Tensor Satellite Gravity Gradients[J]. Journal of Geodynamics, 2013, 66: 59-64.
|
[40] |
万晓云. 引力场梯度张量的非奇异公式推导[J]. 武汉大学学报(信息科学版), 2011, 36(12): 1486-1489. http://ch.whu.edu.cn/article/id/732
Wan Xiaoyun. New Derivation of Nonsingular Expression for Gravitational Gradients Calculation[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1486-1489. http://ch.whu.edu.cn/article/id/732
|
[41] |
Ran J J, Ditmar P, Liu L, et al. Analysis and Mitigation of Biases in Greenland Ice Sheet Mass Ba⁃lance Trend Estimates from GRACE Mascon Products[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(7): e2020JB020880.
|
[42] |
张兴福, 沈云中. 联合GRACE卫星轨道及距离变率数据反演地球重力场方法研究[J]. 大地测量与地球动力学, 2011, 31(2): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201102015.htm
Zhang Xingfu, Shen Yunzhong. Method of Gravity Field Inversion with Combining GRACE Orbits and Range-rate Observations[J]. Journal of Geodesy and Geodynamics, 2011, 31(2): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201102015.htm
|
[43] |
Li X Y, Long D, Scanlon B R, et al. Climate Change Threatens Terrestrial Water Storage over the Tibetan Plateau[J]. Nature Climate Change, 2022, 12(9): 801-807.
|
[44] |
Yi S, Song C Q, Heki K, et al. Satellite-observed Monthly Glacier and Snow Mass Changes in Southeast Tibet: Implication for Substantial Meltwater Contribution to the Brahmaputra[J]. The Cryosphere, 2020, 14(7): 2267-2281.
|
[45] |
Ran J J, Vizcaino M, Ditmar P, et al. Seasonal Mass Variations Show Timing and Magnitude of Meltwater Storage in the Greenland Ice Sheet[J]. The Cryosphere, 2018, 12(9): 2981-2999.
|
[46] |
Ran J J, Tangdamrongsub N, Shi J C, et al. GRACE Observed Mass Loss in the Middle and Lower Yangtze Basin[J]. Geodesy and Geodynamics, 2019, 10(2): 157-162.
|
[47] |
Chang L, Sun W K. Consistency Analysis of GRACE and GRACE-FO Data in the Study of Global Mean Sea Level Change[J]. Geodesy and Geodynamics, 2022, 13(4): 321-326.
|
[48] |
张岚, 孙文科. 重力卫星GRACE Mascon产品的应用研究进展与展望[J]. 地球与行星物理论评, 2022, 53(1): 35-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202201003.htm
Zhang Lan, Sun Wenke. Progress and Prospect of GRACE Mascon Product and Its Application[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(1): 35-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202201003.htm
|
[49] |
钟玉龙, 钟敏, 冯伟, 等. 联合GRACE重力卫星与实测资料估计西辽河流域蒸散发量[J]. 武汉大学学报(信息科学版), 2020, 45(2): 173-178. doi: 10.13203/j.whugis20170402
Zhong Yulong, Zhong Min, Feng Wei, et al. Evaluation of the Evapotranspiration in the West Liaohe River Basin Based on GRACE Satellite and in Situ Measurements[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 173-178. doi: 10.13203/j.whugis20170402
|
[50] |
冯伟, 钟敏, 许厚泽. 联合卫星重力、卫星测高和海洋资料研究中国南海海平面变化[J]. 中国科学: 地球科学, 2012, 42(3): 313-319. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201203002.htm
Feng Wei, Zhong Min, Xu Houze. Sea Level Variations in the South China Sea Inferred from Satellite Gravity, Altimetry, and Oceanographic Data[J]. Scientia Sinica (Terrae), 2012, 42(3): 313-319. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201203002.htm
|
[51] |
周新, 孙文科, 付广裕. 重力卫星GRACE检测出2010年智利Mw 8.8地震的同震重力变化[J]. 地球物理学报, 2011, 54(7): 1745-1749. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201107008.htm
Zhou Xin, Sun Wenke, Fu Guangyu. Gravity Satellite GRACE Detects Coseismic Gravity Changes Caused by 2010 Chile Mw 8.8 Earthquake[J]. Chinese Journal of Geophysics, 2011, 54(7): 1745-1749. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201107008.htm
|
[52] |
朱传东, 陆洋, 史红岭, 等. 基于GRACE数据的格陵兰冰盖质量变化研究[J]. 海洋测绘, 2013, 33(4): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201304009.htm
Zhu Chuandong, Lu Yang, Shi Hongling, et al. Quality Changes of the Greenland Ice Sheet Based on GRACE Satellite Data[J]. Hydrographic Surveying and Charting, 2013, 33(4): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201304009.htm
|
[53] |
冯贵平, 王其茂, 宋清涛. 基于GRACE卫星重力数据估计格陵兰岛冰盖质量变化[J]. 海洋学报, 2018, 40(11): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201811008.htm
Feng Guiping, Wang Qimao, Song Qingtao. Greenland Ice Sheet Mass Variations Based on GRACE Satellite Gravity Data[J]. Haiyang Xuebao, 2018, 40(11): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201811008.htm
|
[54] |
超能芳, 王正涛, 晁定波, 等. 格陵兰岛冰盖质量变化趋势最优非线性模型的建立[J]. 测绘科学, 2014, 39(8): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201408029.htm
Chao Nengfang, Wang Zhengtao, Chao Dingbo, et al. Establishment of Optimal Nonlinear Model on Mass-change Trends over Greenland Ice Sheets[J]. Science of Surveying and Mapping, 2014, 39(8): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201408029.htm
|
[55] |
杨元德, 鄂栋臣, 晁定波. 利用GRACE数据反演格陵兰冰盖冰雪质量变化[J]. 武汉大学学报(信息科学版), 2009, 34(8): 961-964. http://ch.whu.edu.cn/article/id/1329
Yang Yuande, E Dongchen, Chao Dingbo. The Inversion of Ice Mass Change in Greenland Ice Sheet Using GRACE Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 961-964. http://ch.whu.edu.cn/article/id/1329
|
[56] |
韩建成, 陈石, 卢红艳, 等. 基于Slepian方法和地面重力观测确定时变重力场模型: 以2011—2013年华北地区数据为例[J]. 地球物理学报, 2021, 64(5): 1542-1557. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202105006.htm
Han Jiancheng, Chen Shi, Lu Hongyan, et al. Time-variable Gravity Field Determination Using Slepian Functions and Terrestrial Measurements: A Case Study in North China with Data from 2011 to 2013[J]. Chinese Journal of Geophysics, 2021, 64(5): 1542-1557. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202105006.htm
|
[57] |
束秋妍, 潘云, 宫辉力, 等. 基于GRACE的华北平原地下水储量时空变化分析[J]. 国土资源遥感, 2018, 30(2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201802018.htm
Shu Qiuyan, Pan Yun, Gong Huili, et al. Spatiotemporal Analysis of GRACE-based Groundwater Storage Variation in North China Plain[J]. Remote Sensing for Land & Resources, 2018, 30(2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201802018.htm
|
[58] |
王林松, 陈超, 马险, 等. 冰盖消融的海平面指纹变化及其对GRACE监测结果的影响[J]. 地球物理学报, 2018, 61(7): 2679-2690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201807004.htm
Wang Linsong, Chen Chao, Ma Xian, et al. Sea Level Fingerprints of Ice Sheet Melting and Its Impacts on Monitoring Results of GRACE[J]. Chinese Journal of Geophysics, 2018, 61(7): 2679-2690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201807004.htm
|
[59] |
郭金运, 于学敏, 孔巧丽, 等. 基于GRACE卫星数据的低阶重力场时变分析[J]. 地球物理学进展, 2015, 30(3): 1002-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503003.htm
Guo Jinyun, Yu Xuemin, Kong Qiaoli, et al. Analysis of Low Degree Gravity Changes from GRACE Gravity Field Model[J]. Progress in Geophysics, 2015, 30(3): 1002-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503003.htm
|
[60] |
李琼, 罗志才, 钟波, 等. 利用GRACE时变重力场探测2010年中国西南干旱陆地水储量变化[J]. 地球物理学报, 2013, 56(6): 1843-1849. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306007.htm
Li Qiong, Luo Zhicai, Zhong Bo, et al. Terrestrial Water Storage Changes of the 2010 Southwest China Drought Detected by GRACE Temporal Gravity Field[J]. Chinese Journal of Geophysics, 2013, 56(6): 1843-1849. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306007.htm
|
[61] |
汪汉胜, 王志勇, 袁旭东, 等. 基于GRACE时变重力场的三峡水库补给水系水储量变化[J]. 地球物理学报, 2007, 50(3): 730-736. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200703010.htm
Wang Hansheng, Wang Zhiyong, Yuan Xudong, et al. Water Storage Changes in Three Gorges Water Systems Area Inferred from GRACE Time-variable Gravity Data[J]. Chinese Journal of Geophysics, 2007, 50(3): 730-736. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200703010.htm
|
[62] |
叶叔华, 苏晓莉, 平劲松, 等. 基于GRACE卫星测量得到的中国及其周边地区陆地水量变化[J]. 吉林大学学报(地球科学版), 2011, 41(5): 1580-1586. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201105036.htm
Ye Shuhua, Su Xiaoli, Ping Jinsong, et al. Land Water Storage Variations in China and Adjacent Areas Revealed by the GRACE Gravity Mission[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5): 1580-1586. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201105036.htm
|
[63] |
祝意青, 张勇, 杨雄, 等. 时变重力在地震研究方面的进展与展望[J]. 地球与行星物理论评, 2022, 53(3): 278-291. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202203004.htm
Zhu Yiqing, Zhang Yong, Yang Xiong, et al. Pro-gress of Time-varying Gravity in Seismic Research[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(3): 278-291. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202203004.htm
|
[64] |
Gruber T, Murböck M, Nggm D T. e. motion2 — Earth System Mass Transport Mission (Square) — Concept for a Next Generation Gravity Field Mission[R]. Czech: Institut für Astronomische und Physikalische Geodäsie, 2014.
|
[65] |
Pail R, Bamber J, Biancale R, et al. Mass Variation Observing System by High Low Inter-satellite Links (MOBILE) - A New Concept for Sustained Observation of Mass Transport from Space[J]. Journal of Geodetic Science, 2019, 9(1): 48-58.
|
[66] |
Migliaccio F, Reguzzoni M, Batsukh K, et al. MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field[J]. Surveys in Geophysics, 2019, 40(5): 1029-1053.
|
[67] |
Flechtner F M. Realization of a Satellite Mission "GRACE-I" for Parallel Observation of Changing Global Water Resources and Biodiversity[C]//The AGU Fall Meeting, San Francisco, USA, 2020.
|
[68] |
Anthony N, Archimbaud M, Beeck S, et al. GRAVL: Gravity observations by Vertical Laser Ranging[R]. Tyrol, Austria: Team Green, Alpbach Summer School, 2019.
|
[69] |
Lévèque T, Fallet C, Mandea M, et al. Gravity Field Mapping Using Laser-coupled Quantum Accelerometers in Space[J]. Journal of Geodesy, 2021, 95(1): 15.
|
[70] |
Massotti L, Amata G B, Anselmi A, et al. Next Generation Gravity Mission: Status of the Design and Discussion on Alternative Drag Compensation Scenarios[C]//Conference on Sensors, Systems, and Next-Generation Satellites XXIV, Paris, France, 2020.
|
[71] |
Wiese D N, Bienstock B, Blackwood C, et al. The Mass Change Designated Observable Study: Overview and Results[J]. Earth and Space Science, 2022, 9(8): e2022EA002311.
|
[72] |
宁津生, 王正涛, 超能芳. 国际新一代卫星重力探测计划研究现状与进展[J]. 武汉大学学报(信息科学版), 2016, 41(1): 1-8. doi: 10.13203/j.whugis20150732
Ning Jinsheng, Wang Zhengtao, Chao Nengfang. Research Status and Progress in International Next-generation Satellite Gravity Measurement Missions[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 1-8. doi: 10.13203/j.whugis20150732
|
[73] |
Reigber C, Schwintzer P, Neumayer K H, et al. The CHAMP-only Earth Gravity Field Model EIGEN-2[J]. Advances in Space Research, 2003, 31(8): 1883-1888.
|
[74] |
van den Ijssel J, Visser P, Rodriguez E P. Champ Precise Orbit Determination Using GPS Data[J]. Advances in Space Research, 2003, 31(8): 1889-1895.
|
[75] |
Baur O. Greenland Mass Variation from Time-variable Gravity in the Absence of GRACE[J]. Geophysical Research Letters, 2013, 40(16): 4289-4293.
|
[76] |
Flechtner F M, Sneeuw N, Schuh W D. Observation of the System Earth from Space — CHAMP, GRACE, GOCE and Future Missions[M]. Berlin: Springer, 2014.
|
[77] |
Tapley B D, Bettadpur S, Watkins M, et al. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results[J]. Geophysical Research Letters, 2004, 31(9): L09607.
|
[78] |
Chen J L, Cazenave A, Dahle C, et al. Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry[J]. Surveys in Geophysics, 2022, 43(1): 305-345.
|
[79] |
Rodell M, Famiglietti J S, Wiese D N, et al. Emerging Trends in Global Freshwater Availability[J]. Nature, 2018, 557(7707): 651-659.
|
[80] |
Ran J, Ditmar P, Klees R, et al. Statistically Optimal Estimation of Greenland Ice Sheet Mass Variations from GRACE Monthly Solutions Using an Improved Mascon Approach[J]. Journal of Geodesy, 2018, 92(3): 299-319.
|
[81] |
Han S C, Sauber J, Luthcke S B, et al. Implications of Postseismic Gravity Change Following the Great 2004 Sumatra-Andaman Earthquake from the Regional Harmonic Analysis of GRACE Intersatellite Tracking Data[J]. Journal of Geophysical Research, 2008, 113(B11): B11413.
|
[82] |
Reubelt T, Sneeuw N, Iran Pour S, et al. The ESA Project SC4MGV" Assessment of Satellite Constellations for Monitoring the Variations in Earth's Gravity Field"―Overview, Objectives and First Results[C]//The EGU General Assembly Conference, Vienna, 2014.
|
[83] |
Wahr J, Molenaar M, Bryan F. Time Variability of the Earth's Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229.
|
[84] |
Swenson S, Wahr J. Post-processing Removal of Correlated Errors in GRACE Data[J]. Geophysical Research Letters, 2006, 33(8): L08402.
|
[85] |
Klees R, Revtova E A, Gunter B C, et al. The Design of an Optimal Filter for Monthly GRACE Gravity Models[J]. Geophysical Journal International, 2008, 175(2): 417-432.
|
[86] |
Kusche J, Schmidt R, Petrovic S, et al. Decorrelated GRACE Time-variable Gravity Solutions by GFZ, and Their Validation Using a Hydrological Model[J]. Journal of Geodesy, 2009, 83(10): 903-913.
|
[87] |
Floberghagen R, Fehringer M, Lamarre D, et al. Mission Design, Operation and Exploitation of the Gravity Field and Steady-state Ocean Circulation Explorer Mission[J]. Journal of Geodesy, 2011, 85(11): 749-758.
|
[88] |
Brockmann J M, Schubert T, Schuh W D. An Improved Model of the Earth's Static Gravity Field Solely Derived from Reprocessed GOCE Data[J]. Surveys in Geophysics, 2021, 42(2): 277-316.
|
[89] |
Massonnet D. The Interferometric Cartwheel: A Constellation of Passive Satellites to Produce Radar Images to be Coherently Combined[J]. International Journal of Remote Sensing, 2001, 22(12): 2413-2430.
|
[90] |
Farahani H H, Ditmar P, Klees R. Assessment of the Added Value of Data from the GOCE Satellite Mission to Time-varying Gravity Field Modelling[J]. Journal of Geodesy, 2014, 88(2): 157-178.
|
[91] |
Landerer F W, Flechtner F M, Save H, et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance[J]. Geophysical Research Letters, 2020, 47(12): e2020GL088306.
|
[92] |
Flury J, Bettadpur S, Tapley B D. Precise Accelerometry Onboard the GRACE Gravity Field Satellite Mission[J]. Advances in Space Research, 2008, 42(8): 1414-1423.
|
[93] |
Flechtner F, Morton P, Watkins M, et al. Status of the GRACE Follow-On Mission[C]//The IAG 5th International Symposium on Gravity, Geoid and Height Systems (GGHS), Venice, Italy, 2012.
|
[94] |
Sheard B S, Heinzel G, Danzmann K, et al. Intersatellite Laser Ranging Instrument for the GRACE Follow-On Mission[J]. Journal of Geodesy, 2012, 86(12): 1083-1095.
|
[95] |
Wickert J, Michalak G, Schmidt T, et al. GPS Radio Occultation: Results from CHAMP, GRACE and FORMOSAT-3/COSMIC[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2009, 20(1): 35-50.
|
[96] |
Flechtner F, Neumayer K H, Dahle C, et al. What can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications?[J]. Surveys in Geophysics, 2016, 37(2): 453-470.
|
[97] |
Purkhauser A F, Pail R. Triple-pair Constellation Configurations for Temporal Gravity Field Retrieval[J]. Remote Sensing, 2020, 12(5): 831.
|
[98] |
Weigelt M, Dam T, Jäggi A, et al. Time-variable Gravity Signal in Greenland Revealed by High-Low Satellite-to-Satellite Tracking[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(7): 3848-3859.
|
[99] |
Mayer-Gürr T, Behzadpour S, Kvas A, et al. ITSG-Grace2018: Monthly, Daily and Static Gravity Field Solutions from GRACE[EB/OL]. (2018-12-4) GFZ Data Services. https://doi.org/10.5880/ICGEM.2018.003
|
[100] |
Sharifi M, Sneeuw N, Keller W. Gravity Recovery Capability of Four Generic Satellite Formations[J]. Gravity Field of the Earth General Command of Mapping, 2007, 21(5): 130-157.
|
[101] |
Bender P L, Wiese D N, Nerem R S. A Possible Dual-GRACE Mission with 90 Degree and 63 Degree Inclination Orbits[C]//The 3rd International Symposium on Formation Flying, Missions and Technologies European Space Agency Symposium, Noordwijk, 2008.
|
[102] |
Bar-Sever Y, Haines B, Bertiger W, et al. Geode-tic Reference Antenna in Space (GRASP)—A Mission to Enhance Space-Based Geodesy[C]//The COSPAR Colloquium: Scientific and Fundamental Aspects of the Galileo Program, Padua, Italy, 2009.
|
[103] |
Biancale R, Pollet A, Coulot D, et al. E-GRASP/Eratosthenes: A Mission Proposal for Millimetric TRF Realization[C]//The EGU General Assembly Conference, Vienna, 2017.
|
[104] |
Lemoine J, Mandea M. The MARVEL Gravity and Reference Frame Mission Proposal[C]//The EGU General Assembly Conference, Paris, France, 2020.
|
[105] |
Massotti L, Siemes C, March G, et al. Next Gene-ration Gravity Mission Elements of the Mass Change and Geoscience International Constellation: From Orbit Selection to Instrument and Mission Design[J]. Remote Sensing, 2021, 13(19): 3935.
|
[106] |
Hauk M, Schlicht A, Pail R, et al. Gravity Field Recovery in the Framework of a Geodesy and Time Reference in Space (GETRIS)[J]. Advances in Space Research, 2017, 59(8): 2032-2047.
|
[107] |
Wiese D N, Nerem R S, Lemoine F G. Design Considerations for a Dedicated Gravity Recovery Satellite Mission Consisting of Two Pairs of Satellites[J]. Journal of Geodesy, 2012, 86(2): 81-98.
|
[108] |
姜卫平, 赵伟, 赵倩, 等. 新一代探测地球重力场的卫星编队[J]. 测绘学报, 2014, 43(2): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201402002.htm
Jiang Weiping, Zhao Wei, Zhao Qian, et al. Satellite Formation for a New Gravity Field Exploration Mission[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201402002.htm
|
[109] |
Murböck M, Pail R, Daras I, et al. Optimal Orbits for Temporal Gravity Recovery Regarding Temporal Aliasing[J]. Journal of Geodesy, 2014, 88(2): 113-126.
|
[110] |
Wiese D N, Visser P, Nerem R S. Estimating Low Resolution Gravity Fields at Short Time Intervals to Reduce Temporal Aliasing Errors[J]. Advances in Space Research, 2011, 48(6): 1094-1107.
|
[1] | XIAO Yun, LI Yan, ZHOU Zebing, PAN Zongpeng, HUANG Lingyong, WU Baofeng, ZHOU Hao, WANG Libing, HUANG Zhiyong, XU Baopeng. Progress on the Chinese Gravimetry Satellite Missions[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240466 |
[2] | LUO Zhicai, ZHONG Bo, ZHOU Hao, WU Yunlong. Progress in Determining the Earth's Gravity Field Model by Satellite Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1713-1727. DOI: 10.13203/j.whugis20220537 |
[3] | XIAO Yun, WANG Yunpeng, LIU Xiaogang, XU Yunyan. Application of Space-Wise Least Square Method to Error Analysis for Satellite Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 340-346. DOI: 10.13203/j.whugis20170376 |
[4] | NING Jinsheng, WANG Zhengtao, CHAO Nengfang. Research Status and Progress in International Next-Generation Satellite Gravity Measurement Missions[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 1-8. DOI: 10.13203/j.whugis20150732 |
[5] | XU Zhengquan, MAO Tengyue, ZHU Rongbo, HOU Rui. Researching Review on Key Technologies of Next Generation Satellite Networks[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1009-1013. |
[6] | LUO Jia, NING Jinsheng. Analysis of Time-Variable Gravity Field Exploring Performance with LEO Cluster[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 636-638. |
[7] | ZHOU Xuhua, WU Bin, PENG Bibo, XU Houze. Earth's Gravity Field Recovered from CHAMP Science Orbit and Accelerometer Data[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 172-175. |
[8] | NING Jingsheng. Following the Developments of the World,Devoting to the Study on the Earth Gravity Field[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6): 471-474,486. |
[9] | Ning Jinsheng. Developing the Earth's Gravity Field Approximation Theory[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 310-313,286. |
[10] | Ning Jinsheng, Luo Zhicai, Chao Dingbo. The Present Situation on Satellite Gravity Gradiometry and Its Vistas in the Application of Physical Geodesy[J]. Geomatics and Information Science of Wuhan University, 1996, 21(4): 309-314. |