ZHANG Shuangcheng, ZHAO Ying, ZHANG Chenglong, ZHANG Juqing, FAN Qianyou, SI Jinzhao, ZHANG Yafei, ZHU Wu, LI Zhenhong. Co-seismic Deformation Analysis of Qinghai Maduo Ms7.4 Earthquake Based on Optical Remote Sensing and SAR Images[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220615
Citation: ZHANG Shuangcheng, ZHAO Ying, ZHANG Chenglong, ZHANG Juqing, FAN Qianyou, SI Jinzhao, ZHANG Yafei, ZHU Wu, LI Zhenhong. Co-seismic Deformation Analysis of Qinghai Maduo Ms7.4 Earthquake Based on Optical Remote Sensing and SAR Images[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220615

Co-seismic Deformation Analysis of Qinghai Maduo Ms7.4 Earthquake Based on Optical Remote Sensing and SAR Images

More Information
  • Received Date: June 03, 2023
  • Available Online: July 02, 2023
  • objectives: The Ms7.4 earthquake occurred in Maduo, Qinghai Province on May 22, 2021, which is a rare powerful earthquake that occurred in Bayan Har block in recent years, it is essential to study the characteristics of its co-seismic deformation field. Method: Based on sentinel-2 and Landsat8 images before and after Maduo earthquake, East-West and South-North two-dimensional co-seismic deformation fields were obtained by optical Pixel Offset Tracking. InSAR was utilized to obtain LOS co-seismic deformation based on Sentinel-1 ascending and descending images, and SAR Pixel Offset Tracking was utilized to obtain range and azimuth directions co-seismic deformation of the earthquake, meanwhile, 3D co-seismic deformation field of this earthquake is calculated, moreover, the results of co-seismic deformation field extracted are compared and verified. Results: The experimental results show that: co-seismic deformation field characteristics of Maduo earthquake based on optical and SAR images are great consistent. Maduo earthquake is a typical left-lateral strike-slip event, the co-seismic deformation is dominated by East-West horizontal movements, and the seismogenic fault is Jiangcuo fault. Based on optical images, it is obtained that East-West and North-South deformation of the earthquake are about ±1.60m and ±0.60m. Based on SAR images, the maximum LOS uplift and subsidence of ascending are about 1.29m and -1.12m, and descending are about 1.15m and -1.26m. In the 3D co-seismic deformation field, the East-West deformation is about -2.00m to 1.70m, North-South deformation is mainly concentrated in -1.00m to 0.50m, and it moves alternately up and down along both sides of the fault zone in Vertical direction, the deformation is about ±0.3m. The magnitude of deformation values on north side of the earthquake is larger than that on south side. Branch ruptures are shown at the end of the Southeast(34.48° N, 99.04° E) and Northwest(34.76° N, 97.61° E) of the surface rupture, and South side of Eling Lake (34.74° N, 97.75° E), and aftershock sequence is distributed near these branch ruptures. Conclusion: InSAR and Pixel Offset Tracking technology complement each other, which provides an effective way to obtain the complete co-seismic deformation field, and multi-platform, high-resolution optical and SAR images provide important datasets.
  • [1]
    Zhang J, Zhu W, Cheng Y, et al. Landslide Detection in the Linzhi-Ya'an Section along the Sichuan-Tibet Railway Based on InSAR and Hot Spot Analysis Methods[J]. Remote Sensing, 2021, 13(18):3566
    [2]
    Massonnet D, Feigl K L. Radar Interferometry and its Application to Changes in the Earth's Surface[J]. Reviews of Geophysics, 1998, 36(4):441-500
    [3]
    Michel R, Avouac J-P, Taboury J. Measuring Ground Displacements from SAR Amplitude Images:Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(7):875-878
    [4]
    Elliott J L, Freymueller J T, Rabus B. Coseismic Deformation of the 2002 Denali Fault Earthquake:Contributions from Synthetic Aperture Radar Range Offsets[J]. Journal of Geophysical Research, 2007, 112(B6):B06421
    [5]
    Fialko Y, Sandwell D, Simons M, et al. Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit[J]. Nature, 2005, 435(7040):295-299
    [6]
    Michel R, Avouac J-P. Deformation due to the 17 August 1999 Izmit, Turkey, Earthquake Measured from SPOT Images:IZMIT EARTHQUAKE MEASURED FROM SPOT IMAGES[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B4):ETG 2-1-ETG 2-6
    [7]
    Ajorlou N, Hollingsworth J, Mousavi Z, et al. Characterizing Near-Field Surface Deformation in the 1990 Rudbar Earthquake (Iran) Using Optical Image Correlation[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(6)
    [8]
    Wang Leyang, Zou Ajian. Retrieving 3-D Coseismic Deformation of the 2016 Mw7.8 Kaikoura Earthquake Using SAR and Optical Data[J]. Geomatics and Information Science of Wuhan University, 2022:1-14(王乐洋, 邹阿健. 结合SAR和光学数据检索凯库拉Mw7.8地震三维形变[J]. 武汉大学学报(信息科学版), 2022:1-14)
    [9]
    Zhang C, Li Z, Yu C, et al. An Integrated Framework for Wide-Area Active Landslide Detection with InSAR Observations and SAR Pixel Offsets[J]. Landslides, 2022
    [10]
    Yao J, Yao X, Wu Z, et al. Research on Surface Deformation of Ordos Coal Mining Area by Integrating Multitemporal D-InSAR and Offset Tracking Technology[J]. Journal of Sensors, 2021, 2021(4):1-14
    [11]
    Yu Pengfei, Xiong Wei, Chen Wei, et al. Slip Model of the 2021 M7.4 Madoi Earthquake Constrained by GNSS and InSAR Coseismic Delormation[J]. Chinese Journal of Geophysics, 2022, 65(2):509-522,(余鹏飞, 熊维, 陈威, 等. 基于GNSS和InSAR约束的2021年玛多Ms7.4地震同震滑动分布及应用[J]. 地球物理学报, 2022, 65(2):509-522)
    [12]
    Liu Jihong, Hu Jun, Li hiwei, et al. Complete Three-Dimensional Coseismic Displacements due to the 2021 Maduo Earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR Images[J]. Science China Earth Sciences, 2022, 52(5):882-892(刘计洪, 胡俊, 李志伟, 等. 融合哨兵1 号和ALOS-2数据的2021年青海玛多地震高精度三维同震形变场研究[J]. 中国科学:地球科学, 2022, 52(5):882-892)
    [13]
    Li Haibing, Pan liawei, Sun Zhiming, et al. Continental Tectonic Deformation and Seismic Activity:A Case Study from the Tibetan Plateau[J]. Acta Geologica Sinica, 2021, 95(1):194-213(李海兵, 潘家伟, 孙知明, 等. 大陆构造变形与地震活动——以青藏高原为例[J]. 地质学报, 2021, 95(1):194-213)
    [14]
    Deng Qidong,Cheng Shaoping,Ma Ji, et al. Seismic Activities and Earthquake Potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2014, 57(7):2025-2042(邓起东, 程绍平, 马冀, 等. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报, 2014, 57(7):2025-2042)
    [15]
    Jia Shixu, Lin Jiyan, Guo Wenbin, et al. Investigation on Diversity of Crustal Structures Beneath the Bayan Har Block[J]. Chinese Journal of Geophysics, 2017, 60(6):2226-2238(嘉世旭, 林吉焱, 郭文斌,等. 巴颜喀拉块体地壳结构多样性探测[J]. 地球物理学报, 2017, 60(6):2226-2238)
    [16]
    Gao Xiang, Deng Qidong. Activity Analysis of Large Earthquakes in Boundary Faults around the Bayankala Faulting Block[J]. Acta Geologica Sinica, 2013, 87(1):9-19(高翔, 邓起东. 巴颜喀喇断块边界断裂强震活动分析[J]. 地质学报, 2013, 87(1):9-19)
    [17]
    Robinson D P, Brough C, Das S. The Mw7.8, 2001 Kunlunshan Earthquake:Extreme Rupture Speed Variability and Effect of Fault Geometry[J]. Journal of Geophysical Research, 2006, 111(B8):B08303
    [18]
    Li Z, Elliott J R, Feng W, et al. The 2010 MW 6.8 Yushu (Qinghai, China) Earthquake:Constraints Provided by InSAR and Body Wave Seismology[J]. Journal of Geophysical Research, 2011, 116(B10):B10302
    [19]
    Feng G, Hetland E A, Ding X, et al. Coseismic Fault Slip of the 2008 Mw7.9 Wenchuan Earthquake Estimated from InSAR and GPS Measurements[J]. Geophysical Research Letters, 2010, 37(1)
    [20]
    Huang Y, Qiao X, Freymueller J T, et al. Fault Geometry and Slip Distribution of the 2013 Mw6.6 Lushan Earthquake in China Constrained by GPS, InSAR, Leveling, and Strong Motion Data[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(7):7341-7353
    [21]
    Zhao D, Qu C, Shan X, et al. InSAR and GPS Derived Coseismic Deformation and Fault Model of the 2017 Ms7.0 Jiuzhaigou Earthquake in the Northeast Bayanhar Block[J]. Tectonophysics, 2018, 726:86-99
    [22]
    Li Zhicai, Ding Kaihua, Zhang Peng, et al. Co-seismic Deformation and Slip Distribution Of 2021 Mw7.4 Madoi Earthquake from GNSS Observation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1489-1497(李志才, 丁开华, 张鹏, 等. GNSS观测的2021年青海玛多地震(Mw 7.4)同震形变及其滑动分布[J]. 武汉大学学报(信息科学版), 2021, 46(10):1489-1497)
    [23]
    Pan Jiawei, Bai Mingkun, Li Chao, et al. Coseismic Surface Rupture and Seismogenic Structure of the 2021-05-22 Maduo (Qinghai) Ms7.4 Earthquake[J]. Acta Geologica Sinica, 2021, 95(6):1655-1670(潘家伟, 白明坤, 李超, 等. 2021年 5月 22日青海玛多Ms7.4地震地表破裂带及发震构造[J]. 地质学报, 2021, 95(6):1655-1670)
    [24]
    Wang Weilai, Fang Lihua, Wu Jianping, et al. Aftershock Sequence Relocation of the 2021 Ms7.4 Maduo Earthquake, Qinghai, China[J]. Science China Earth Sciences, 2021, 51(7):1193-1202(王未来, 房立华, 吴建平, 等. 2021年青海玛多Ms7.4地震序列精定位研究[J]. 中国科学:地球科学, 2021, 51(7):1193-1202)
    [25]
    He Lijia, Feng Guangcai, Feng Zhixiong, et al. Coseismic Displacements of 2016 Mw7.8 Kaikoura, New Zealand Earthquake, Using Sentinel-2 Optical Images[J]. Acta Geodaetica Et Cartographica Sinic, 2019, 48(3):339-351(贺礼家, 冯光财, 冯志雄, 等. 哨兵-2号光学影像地表形变监测:以2016年 Mw7.8新西兰凯库拉地震为例[J]. 测绘学报, 2019, 48(3):339-351)
    [26]
    Leprince S, Barbot S, Ayoub F, et al. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6):1529-1558
    [27]
    Yang W, Wang Y, Wang Y, et al. Retrospective Deformation of the Baige Landslide Using Optical Remote Sensing Images[J]. Landslides, 2020, 17(3):659-668
    [28]
    Liu Lin, Song Haofeng, Du Yanan, et al. Time-Series Offset Tracking of the Baige Landslide Based on Sentinel-2 and Landsat 8[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1461-1470(柳林, 宋豪峰, 杜亚男, 等. 联合哨兵2 号和Landsat 8估计白格滑坡时序偏移量[J]. 武汉大学学报(信息科学版), 2021, 46(10):1461-1470)
    [29]
    Feng G, Ding X, Li Z, et al. Calibration of an InSAR-Derived Coseimic Deformation Map Associated With the 2011 Mw-9.0 Tohoku-Oki Earthquake[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2):302-306
    [30]
    Michel R, Avouac J-P. Coseismic Surface Deformation from Air Photos:The Kickapoo Step over in the 1992 Landers Rupture:AIRBORNE IMAGERY OF COSEISMIC RUPTURE[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B3):n/a-n/a
    [31]
    Scherler D, Leprince S, Strecker M R. Glacier-Surface Velocities in Alpine Terrain from Optical Satellite Imagery-Accuracy Improvement and Quality Assessment[J]. Remote Sensing of Environment, 2008, 112(10):3806-3819
    [32]
    Ding C, Feng G, Li Z, et al. Spatio-Temporal Error Sources Analysis and Accuracy Improvement in Landsat 8 Image Ground Displacement Measurements[J]. Remote Sensing, 2016, 8(11):937
    [33]
    Wegmüller U, Werner C. Gamma SAR Processor and Interferometry Software[J]. ESA SP (Print), 1997:1687-1692
    [34]
    Scheiber R, Moreira A. Coregistration of Interferometric SAR Images Using Spectral Diversity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2179-2191
    [35]
    Goldstein R M, Werner C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letters, 1998, 25(21):4035-4038
    [36]
    Pepe A, Lanari R. On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2374-2383
    [37]
    Yu C, Penna N T, Li Z. Generation of Real-Time Mode High-Resolution Water Vapor Fields from GPS Observations[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(3):2008-2025
    [38]
    Yu C, Li Z, Penna N T. Interferometric Synthetic Aperture Radar Atmospheric Correction Using a GPS-Based Iterative Tropospheric Decomposition Model[J]. Remote Sensing of Environment, 2018, 204:109-121
    [39]
    Strozzi T, Luckman A, Murray T, et al. Glacier Motion Estimation Using SAR Offset-Tracking Procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2384-2391
    [40]
    Wegnüller U, Werner C, Strozzi T, et al. Sentinel-1 Support in the GAMMA Software[J]. Procedia Computer Science, 2016, 100:1305-1312
    [41]
    Zhang Chenglong, Li Zhenhong, Zhang Shuangcheng, et al. Surface Ruptures of the 2022 Mw6.7 Menyuan Earthquake Revealed by Integrated Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1257-1270(张成龙, 李振洪, 张双成, 等. 综合遥感解译2022年 Mw6.7青海门源地震地表破裂带[J]. 武汉大学学报(信息科学版), 2022, 47(8):1257-1270)
    [42]
    Werner C, Wegmuller U, Strozzi T, et al. Precision Estimation of Local Offsets between Pairs of SAR SLCs and Detected SAR Images[C]//Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05.. Seoul, Korea:IEEE,2005:4803-4805
    [43]
    Huang L, Li Z. Comparison of SAR and Optical Data in Deriving Glacier Velocity with Feature Tracking[J]. International Journal of Remote Sensing, 2011, 32(10):2681-2698
    [44]
    Yan S, Guo H, Liu G, et al. Mountain Glacier Displacement Estimation Using a DEM-Assisted Offset Tracking Method with ALOS/PALSAR Data[J]. Remote Sensing Letters, 2013, 4(5):494-503
    [45]
    Zhang W, Zhu W, Tian X, et al. Improved DEM Reconstruction Method Based on Multibaseline InSAR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5
    [46]
    Konca A O, Leprince S, Avouac J-P, et al. Rupture Process of the 1999 Mw 7.1 Duzce Earthquake from Joint Analysis of SPOT, GPS, InSAR, Strong-Motion, and Teleseismic Data:A Supershear Rupture with Variable Rupture Velocity[J]. Bulletin of the Seismological Society of America, 2010, 100(1):267-288
  • Related Articles

    [1]HUANG Bohua, YANG Bohang, LI Minggui, GUO Zhongkai, MAO Jianyou, WANG Hong. An Improved Method for MAD Gross Error Detection of Clock Error[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 747-752. DOI: 10.13203/j.whugis20190430
    [2]WANG Leyang, GU Wangwang, ZHAO Xiong, XU Guangyu, GAO Hua. Determination of Relative Weight Ratio of Joint Inversion Using Bias-Corrected Variance Component Estimation Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 508-516. DOI: 10.13203/j.whugis20200216
    [3]IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
    [4]ZHAO Jianhu, WU Jingwen, ZHAO Xinglei, ZHOU Fengnian. A Correction Model for Depth Bias in Airborne LiDAR Bathymetry Systems[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 328-333. DOI: 10.13203/j.whugis20160481
    [5]LU Tieding, YANG Yuanxi, ZHOU Shijian. Comparative Analysis of MDB for Different Outliers Detection Methods[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 185-192, 199. DOI: 10.13203/j.whugis20140330
    [6]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [7]SUN Wenchuan, BAO Jingyang, JIN Shaohua, XIAO Fumin, ZHANG Zhiwei. A Re-calibration Method for Roll Bias of Multi-beam Sounding System[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1440-1444. DOI: 10.13203/j.whugis20140481
    [8]ZOU Qin, LI Qingquan. Target-points MST for Pavement Crack Detection[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 71-75.
    [9]HUANG Xianyuan, ZHAI Guojun, SUI Lifen, HUANG Motao. Application of Least Square Support Vector Machine to Detecting Outliers of Multi-beam Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1188-1191.
    [10]XU Caijun, WANG Jianglin. Linear Minimum Mean Square Error Estimation for Wet Delay Correction in SAR Interferogram[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 757-760.

Catalog

    Article views (385) PDF downloads (91) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return