GE Qiaoqiao, SUN Qian, ZHANG Ning, HU Jun. Evaluation of Geological Hazard Susceptibility of Baiyin City Based on Multi-temporal InSAR Deformation Measurements[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1434-1443. DOI: 10.13203/j.whugis20220192
Citation: GE Qiaoqiao, SUN Qian, ZHANG Ning, HU Jun. Evaluation of Geological Hazard Susceptibility of Baiyin City Based on Multi-temporal InSAR Deformation Measurements[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1434-1443. DOI: 10.13203/j.whugis20220192

Evaluation of Geological Hazard Susceptibility of Baiyin City Based on Multi-temporal InSAR Deformation Measurements

More Information
  • Received Date: December 10, 2022
  • Available Online: April 06, 2023
  • Objectives 

    Geological hazard points and hidden danger points are the data basis for geological hazard evaluation, while the existing records of geological hazard points have poor timeliness and are incomplete. To solve this problem, the deformation information obtained by multi-temporal interferometric synthetic aperture radar (InSAR) was integrated into the geological hazard evaluation model. And we explore how to make better use of the deformation information.

    Methods 

    The greater the deformation level, the greater the possibility of geological hazards. This paper not only takes the deformation points obtained by multi-temporal InSAR as the geological hazard points/hidden danger points, but also integrates the deformation level information obtained by multi-temporal InSAR as an evaluation factor into the susceptibility evaluation model, making full use of the effective deformation information obtained by multi-temporal InSAR. And the evaluation model adopts the coupling model based on information value model and the analytic hierarchy process model to obtain the susceptibility evaluation and zoning of the geological hazards in Baiyin City, Gansu Province,China.

    Results 

    Through the verification of the existing geological disaster point data, it is found that the partitions in this paper are in good agreement with the existing geological hazard points distribution.In the designated extremely high-prone areas, there are nearly 8 geological disaster points within 10 km2, while less than one in the extremely low-prone areas.

    Conclusion 

    The multi-temporal InSAR deformation information added to the geological hazard evaluation model greatly improves the timeliness and quantity of records of geological hazard points/hidden points. However, only one kind of synthetic aperture radar data cannot completely identify all geological hazard points/hidden danger points, due to the limitations of incidence angle and microwave wavelength. In the futher work, we will focus on the combination of multiple deformation monitoring technologies to jointly monitor surface deformation, such as multi-sensor and multi-track InSAR technology, airborne light laser detection and ranging and high-resolution optical remote sensing.

  • [1]
    中共中央,国务院. 中共中央 国务院关于建立国土空间规划体系并监督实施的若干意见[Z]. 2019

    Several Opinions of the Central Committee of the Communist Party of China and the State Council on Establishing a Land and Space Planning System and Supervising the Implementation[Z]. 2019
    [2]
    刘斌, 葛大庆, 王珊珊, 等. TOPS和ScanSAR模式InSAR在广域地灾隐患识别中的联合应用[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1756-1762.

    Liu Bin, Ge Daqing, Wang Shanshan, et al. Combining Application of TOPS and ScanSAR InSAR in Large-Scale Geohazards Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1756-1762.
    [3]
    Hu J, Wang Q J, Li Z W, et al. Retrieving Three-Dimensional Coseismic Displacements of the 2008 Gaize, Tibet Earthquake from Multi-path Interferometric Phase Analysis[J]. Natural Hazards, 2014, 73(3): 1311-1322.
    [4]
    李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897.

    Li Zhenhong, Han Bingquan, Liu Zhenjiang, et al. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897.
    [5]
    陆超然, 蔡杰华, 刘东烈, 等. 基于卫星InSAR技术的地质灾害隐患点探测与形变分析[J]. 南京信息工程大学学报(自然科学版), 2020, 12(2): 216-222.

    Lu Chaoran, Cai Jiehua, Liu Donglie, et al. Detection of Geological Hazards Danger Points and Deformation Time Series Analysis Based on Satellite InSAR Technique[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2020, 12(2): 216-222.
    [6]
    许强, 蒲川豪, 赵宽耀, 等. 延安新区地面沉降时空演化特征时序InSAR监测与分析[J]. 武汉大学学报(信息科学版), 2021, 46(7): 957-969.

    Xu Qiang, Pu Chuanhao, Zhao Kuanyao, et al. Time Series InSAR Monitoring and Analysis of Spatiotemporal Evolution Characteristics of Land Subsidence in Yan’an New District[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 957-969.
    [7]
    朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2): 135-144.

    Zhu Jianjun, Yang Zefa, Li Zhiwei. Recent Progress in Retrieving and Predicting Mining-Induced 3D Displacements Using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135-144.
    [8]
    Lu P, Catani F, Tofani V, et al. Quantitative Hazard and Risk Assessment for Slow-Moving Landslides from Persistent Scatterer Interferometry[J]. Landslides, 2014, 11(4): 685-696.
    [9]
    Ciampalini A, Raspini F, Lagomarsino D, et al. Landslide Susceptibility Map Refinement Using PSInSAR Data[J]. Remote Sensing of Environment, 2016, 184: 302-315.
    [10]
    Carlà T, Intrieri E, Raspini F, et al. Perspectives on the Prediction of Catastrophic Slope Failures from Sa-tellite InSAR[J]. Scientific Reports, 2019, 9: 14137.
    [11]
    朱玉. 基于PS-InSAR的贵州省大方县、纳雍县滑坡易发性评价[D].北京:中国地质大学(北京), 2020.

    Zhu Yu. Landslide Susceptibility Assessment of Dafang and Nayong County of Guizhou Provience Combining with PS-InSAR[D]. Beijing:China University of Geosciences(Beijing),2020.
    [12]
    王京. 长时序星载InSAR技术滑坡地质灾害监测研究[D]. 北京:北京交通大学, 2018.

    Wang Jing. Research on Monitoring of Landslide Geological Disters Using Time Series Spaceborne InSAR Technology[D]. Beijing:Beijing Jiaotong University,2018.
    [13]
    卢星宇. 基于InSAR技术的九寨沟地质灾害危险性评价研究[D]. 成都:电子科技大学,2021.

    Lu Xingyu. Risk Assessment of Geological Hazards in Jiuzhaigou, China Based on InSAR Technique[D]. Chengdu:University of Electronic Science and Technology of China,2021.
    [14]
    张磊. 油气管道沿线地质灾害识别与评价方法研究[D]. 成都: 四川师范大学, 2020.

    Zhang Lei. Research on Identification and Evaluation Methods of Geological Disasters Along Oil and Gas Pipelines[D].Chengdu: Sichuan Normal University, 2020.
    [15]
    陈银. 融入PSInSAR的318国道拉萨段滑坡敏感性评价[D]. 成都:西南交通大学, 2018.

    Chen Yin. Landslide Susceptibility Assessment of G318 Lasa Section Combining with PSInSAR[D]. Chengdu:Southwest Jiaotong University,2018.
    [16]
    白银市人民政府.白银概况[Z]. http://www. baiyin.gov. cn/zjby. html.

    The People's Government of Baiyin Municipality.Overview of Baiyin City[Z]. http://www. baiyin.gov.cn/zjby.html.
    [17]
    白银市人民政府办公室. 白银市2020年地质灾害防治工作方案[Z].http://www. baiyin.gov.cn/xxgk/zfwjn/202006/t20200623_ 168328.html,2020.

    The People's Government of Baiyin Municipality.Work Plan for Geological Disaster Prevention and Control in Baiyin City in 2020[Z]. http://www.baiyin.gov.cn/xxgk /zfwjn/ 202006/t20200623_168328.html,2020.
    [18]
    刘国祥. InSAR原理与应用[M]. 北京: 科学出版社, 2019.

    Liu Guoxiang. Principle and Application of InSAR[M]. Beijing: Science Press, 2019.
    [19]
    Xu B, Li Z W, Wang Q J, et al. A Refined Strategy for Removing Composite Errors of SAR Interferogram[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 143-147.
    [20]
    Xu W B, Li Z W, Ding X L, et al. Interpolating Atmospheric Water Vapor Delay by Incorporating Terrain Elevation Information[J]. Journal of Geodesy, 2011, 85(9): 555-564.
    [21]
    Hu J, Ge Q Q, Liu J H, et al. Constructing Adaptive Deformation Models for Estimating DEM Error in SBAS-InSAR Based on Hypothesis Testing[J]. Remote Sensing, 2021, 13(10): 2006.
    [22]
    张晓东. 基于遥感和GIS的宁夏盐池县地质灾害风险评价研究[D]. 北京: 中国地质大学(北京), 2018.

    Zhang Xiaodong. Study on Geological Disaster Risk Assessment Based on RS and GIS in Yanchi County, Ningxia[D]. Beijing: China University of Geosciences(Beijing), 2018.
    [23]
    Kumar R, Anbalagan R. Landslide Susceptibility Mapping Using Analytical Hierarchy Process (AHP) in Tehri Reservoir Rim Region, Uttarakhand[J]. Journal of the Geological Society of India, 2016, 87(3): 271-286.
    [24]
    杜谦, 范文, 李凯, 等. 二元Logistic回归和信息量模型在地质灾害分区中的应用[J]. 灾害学, 2017, 32(2): 220-226.

    Du Qian, Fan Wen, Li Kai, et al. Geohazard Susceptibility Assessment by Using Binary Logical Regression and Information Value Model[J]. Journal of Catastrophology, 2017, 32(2): 220-226.
    [25]
    王兵虎, 马学军, 邵长庆, 等. 基于层次分析和信息量法的地裂缝危险性评价[J]. 探矿工程(岩土钻掘工程), 2018, 45(10): 91-96.

    Wang Binghu, Ma Xuejun, Shao Changqing, et al. Risk Assessment of Ground Fissures Based on AHP and Information Method[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018, 45(10): 91-96.
    [26]
    何恩业, 季轩梁, 李晓, 等. 2001—2020年福建沿海赤潮灾害分级和时空分布特征研究[J]. 海洋通报, 2021, 40(5): 578-590.

    He Enye, Ji Xuanliang, Li Xiao, et al. The Spatial-temporal Distribution and Hazard Grading of Red Tides in Fujian Coast Waters During 2001—2020[J]. Marine Science Bulletin, 2021, 40(5): 578-590.
    [27]
    van Leijen F J, Hanssen R F. Persistent Scatterer Density Improvement Using Adaptive Deformation Models[C]// IEEE International Geoscience and Remote Sensing Symposium. Barcelona, Spain, 2007.
    [28]
    Saaty T L. A Scaling Method for Priorities in Hie-rarchical Structures[J]. Journal of Mathematical Psychology, 1977, 15(3): 234-281.
    [29]
    Saaty T L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation[M]. New York: McGraw-Hill, 1980.
  • Related Articles

    [1]YANG Mengshi, LIAO Mingsheng, CHANG Ling, HANSSEN Ramon F.. Interpretation of Multi-epoch InSAR Deformation for Urban Scenes: A Problem Analysis and Literature Review[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1643-1660. DOI: 10.13203/j.whugis20230289
    [2]PENG Ying, XU Caijun, LIU Yang. Deriving 3D Coseismic Deformation Field of 2017 Jiuzhaigou Earthquake with Elastic Dislocation Model and InSAR Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1896-1905. DOI: 10.13203/j.whugis20200289
    [3]BIAN Weiwei, WU Jicang, ZHANG Lei, GAO Yu. Temporal and Spatial Statistical Analysis of Strong Earthquakes and Spatial Distribution Characteristics of InSAR Coseismic Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 875-886. DOI: 10.13203/j.whugis20220176
    [4]WANG Zhidong, WEN Xuehu, TANG Wei, LIU Hui, WANG Defu. Early Detection of Geological Hazards in Longmenshan-Dadu River Area Using Various InSAR Techniques[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 451-459. DOI: 10.13203/j.whugis20190064
    [5]CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461
    [6]WEI Erhu, WAN Lihua, JIN Shuanggen, LIU Jingnan. Estimation of ERP with Combined Observations of GNSS and SLR[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 581-585. DOI: 10.13203/j.whugis20120213
    [7]XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391.
    [8]Dongmei, XU Houze. Determination of Geoid Using GPS Leveling and Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 621-624.
    [9]XU Caijun, JIANG Guoyan, WANG Hao, WEN Yangmao. Analyzing InSAR Results Using GIS and Its Application on the Coseismic Interpretation of Mw7.9 Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 379-383.
    [10]WU Yunsun, LI Zhenhong, LIU Jingnan, XU Caijun. Atmospheric Correction Models for InSAR Measurements[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 862-867.
  • Cited by

    Periodical cited type(2)

    1. Xupeng Liu,Guangyu Xu,Mingkai Chen,Tengxu Zhang. Factors influencing the effectiveness of SM-VCE method in solving 3D surface deformation. Geodesy and Geodynamics. 2025(01): 55-66 .
    2. 王崇,童立强,吴振宇,王正阳,彭云,陈雪,朱家辉,胡成磊,穆传周. 顾及SAR影像几何畸变定量分析的三维形变速率求解方法. 测绘科学. 2024(02): 76-88 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return