CHEN Li, DING Yulin, ZHU Qing, ZENG Haowei, ZHANG Liguo, LIU Fei. Few-Shot Prediction of Landslide Susceptibility Based on Meta-Learning Paradigm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1367-1376. DOI: 10.13203/j.whugis20220076
Citation: CHEN Li, DING Yulin, ZHU Qing, ZENG Haowei, ZHANG Liguo, LIU Fei. Few-Shot Prediction of Landslide Susceptibility Based on Meta-Learning Paradigm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1367-1376. DOI: 10.13203/j.whugis20220076

Few-Shot Prediction of Landslide Susceptibility Based on Meta-Learning Paradigm

More Information
  • Received Date: March 04, 2023
  • Available Online: April 24, 2024
  • Objectives 

    The landslides disaster is one of the most important factors for the construction of major infrastructure in the western China. How to effectively and reliably carry out wide-area landslide susceptibility prediction has always been a frontier difficulty in domestic and foreign studies. However, the present data-driven methods for prediction of landslide susceptibility in large-scale and complex scenarios still face two major issues:(1) The difference between various landslide inducing environments in a wide range of scenarios, would cause the difficulty to applying a single model to account for multiple landslide phenomenon;(2) small sample problem: Complex environmental tasks require models with large capacity and strong representative power, but there is a lack of sufficient landslide samples in practice.

    Methods 

    In response to the above problems, this paper takes Qijiang and Fuling District of Chongqing City, China as an example, proposes a local prediction strategy, and introduces the idea of meta-training an intermediate representation suited to be generalized, that can be adapted to the landslide sensitivity prediction task cor-responding to the current local area, with only a very small number of samples in the local area, and number of iterations. Thus, the two issues mentioned can be well settled.

    Results 

    The proposed method is different from traditional methods such as support vector machines, multilayer perceptrons, and random forests, which require a large number of samples and gradient iterations to train the supervised model. Instead, only a small sample is required to fine-tune the intermediate model, which still improves the global accuracy by 1%-5%, the precision by 1%-3%, the F1-score by 0.5%-6%, and the recall rate is close to the highest level of other methods.

    Conclusions 

    The meta-learning paradigm enables few-shot adaptation of landslide susceptibility prediction model with superior statistical performance.

  • [1]
    Guzzetti F, Reichenbach P, Ardizzone F, et al. Estimating the Quality of Landslide Susceptibility Models[J]. Geomorphology, 2006, 81(1/2): 166-184.
    [2]
    Samodra G, Chen G Q, Sartohadi J, et al. Comparing Data-Driven Landslide Susceptibility Models Based on Participatory Landslide Inventory Mapping in Purwosari Area, Yogyakarta, Java[J]. Environmental Earth Sciences, 2017, 76(4): 184.
    [3]
    朱庆, 曾浩炜, 丁雨淋, 等. 重大滑坡隐患分析方法综述[J]. 测绘学报, 2019, 48(12): 1551-1561.

    Zhu Qing, Zeng Haowei, Ding Yulin, et al. A Review of Major Potential Landslide Hazards Analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561.
    [4]
    Aditian A, Kubota T, Shinohara Y. Comparison of GIS-Based Landslide Susceptibility Models Using Frequency Ratio, Logistic Regression, and Artificial Neural Network in a Tertiary Region of Ambon, Indonesia[J]. Geomorphology, 2018, 318: 101-111.
    [5]
    Arabameri A, Karimi-Sangchini E, Pal S C, et al. Novel Credal Decision Tree-based Ensemble Approaches for Predicting the Landslide Susceptibility[J]. Remote Sensing, 2020, 12(20): 3389.
    [6]
    Chen W, Pourghasemi H R, Naghibi S A. A Comparative Study of Landslide Susceptibility Maps Produced Using Support Vector Machine with Different Kernel Functions and Entropy Data Mining Models in China[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(2): 647-664.
    [7]
    武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报(信息科学版), 2016, 41(5): 665-671.

    Wu Xueling, Shen Shaoqing, Niu Ruiqing. Landslide Susceptibility Prediction Using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671.
    [8]
    Chen Y Y, Ming D P, Ling X, et al. Landslide Susceptibility Mapping Using Feature Fusion-based CPCNN-ML in Lantau Island, Hong Kong[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3625-3639.
    [9]
    Tanyu B F, Abbaspour A, Alimohammadlou Y, et al. Landslide Susceptibility Analyses Using Random Forest, C4.5, and C5.0 with Balanced and Un-balnced Datasets[J]. Catena, 2021, 203: 105355.
    [10]
    Hong H Y, Liu J Z, Bui D T, et al. Landslide Susceptibility Mapping Using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest Ensembles in the Guangchang Area (China)[J]. Catena, 2018, 163: 399-413.
    [11]
    Zhu Q, Chen L, Hu H, et al. Unsupervised Feature Learning to Improve Transferability of Landslide Susceptibility Representations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3917-3930.
    [12]
    Huang F M, Zhang J, Zhou C B, et al. A Deep Learning Algorithm Using a Fully Connected Sparse Autoencoder Neural Network for Landslide Susceptibility Prediction[J]. Landslides, 2020, 17(1): 217-229.
    [13]
    Wang W D, He Z L, Han Z, et al. Mapping the Susceptibility to Landslides Based on the Deep Belief Network: A Case Study in Sichuan Province, China[J]. Natural Hazards, 2020, 103(3): 3239-3261.
    [14]
    陈涛, 钟子颖, 牛瑞卿, 等. 利用深度信念网络进行滑坡易发性评价[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1809-1817.

    Chen Tao, Zhong Ziying, Niu Ruiqing, et al. Mapping Landslide Susceptibility Based on Deep Belief Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1809-1817.
    [15]
    解传银. 基于权重模型的滑坡灾害敏感性评价[J]. 中南大学学报(自然科学版), 2011, 42(6): 1772-1779.

    Xie Chuanyin. Landslides Hazard Susceptibility Evaluation Based on Weighting Model[J]. Journal of Central South University (Science and Technology), 2011, 42(6): 1772-1779.
    [16]
    Zhang S, Ye F, Wang B N, et al. Few-shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning[J]. IEEE Transactions on Industry Applications, 2021, 57(5): 4754-4764.
    [17]
    王志恒, 胡卓玮, 赵文吉, 等. 基于多层感知器模型的区域滑坡敏感性评价研究: 以四川低山丘陵区为例[J]. 防灾减灾工程学报, 2015, 35(5): 691-698.

    Wang Zhiheng, Hu Zhuowei, Zhao Wenji, et al. Research on Regional Landslide Susceptibility Assessment Based on Multiple Layer Perceptron—Taking the Hilly Area in Sichuan as Example[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(5): 691-698.
    [18]
    Achanta R, Shaji A, Smith K, et al. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
    [19]
    Vanschoren J. Meta-Learning[M]// Automated Machine Learning. Cham: Springer, 2019: 35-61.
    [20]
    Finn C, Abbeel P, Levine S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks[C]//The 34th International Conference on Machine Learning, Sydney, New South Wales, Australia, 2017.
    [21]
    武雪玲, 杨经宇, 牛瑞卿. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1223-1232.

    Wu Xueling, Yang Jingyu, Niu Ruiqing. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1223-1232.
  • Related Articles

    [1]JIN Biao, CHEN Shanshan, LI Zhulian, LI Yuqiang, LI Zixiao. SBAS GEO Satellite User Range Error and Position Augmentation Research[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1166-1175. DOI: 10.13203/j.whugis20210091
    [2]ZHANG Qin, WANG Le, LAI Wen, WANG Qining, LONG Zhengxin. Simulation and Comprehensive Performance Evaluation of the Integrated Space-Ground System for Low Earth Orbit-Enhanced BeiDou Navigation Satellite System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1863-1875. DOI: 10.13203/j.whugis20230342
    [3]BU Jinwei, ZUO Xiaoqing, JIN Lixin, CHANG Jun. Positioning Performance Evaluation of BDS/QZSS and Its Combined Systems in China, Japan and Their Peripheral Areas[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 574-585, 611. DOI: 10.13203/j.whugis20180228
    [4]WANG Lei, CHEN Ruizhi, LI Deren, YU Baoguo, WU Cailun. Quality Assessment of the LEO Navigation Augmentation Signals from Luojia-1A Satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191-2196. DOI: 10.13203/j.whugis20180413
    [5]ZHANG Lihua, WEN Lianfa, JIA Shuaidong. Indices and Methods for Evaluating Quantificationally the Quality of Simplification of a Depth-Contour in Nautical Chart[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 496-501, 508. DOI: 10.13203/j.whugis20160113
    [6]LI Zuohu, HAO Jinming, LI Jianwen, ZHANG Chengjun. Analysis on QZSS Augmentation on Area Performance of GPS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 17-20.
    [7]LIU Xin, YIN Qian, GUO Ping. A Study of Software Fault Tolerance System Evaluation Strategy[J]. Geomatics and Information Science of Wuhan University, 2008, 33(10): 1018-1021.
    [8]CHEN Nan. Performance Evaluation of the Structure of GNSS Navigation Message[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 512-515.
    [9]ZHANG Yajie, TANG Xu, ZHU Guorui. Improvement on Evaluation Model for Base Land Price[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 551-554.
    [10]TANG Xu, HU Shiyuan, LIU Yaolin. Design and Integration of Repository in Land Evaluation System[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 433-437. DOI: 10.13203/j.whugis2004.05.013
  • Cited by

    Periodical cited type(22)

    1. 张奋,贾小林,阮仁桂,朱永兴,宗文鹏. QZSS区域卫星导航系统性能分析. 测绘与空间地理信息. 2024(10): 11-15 .
    2. 金彪,李锐,王盾,刘磊,原晋栩,李子潇. 星基增强系统单频服务性能评估方法. 北京航空航天大学学报. 2024(10): 3062-3073 .
    3. 寇瑞雄,杨树文. 基于广义延拓逼近法的QZSS卫星钟差内插精度分析. 全球定位系统. 2022(04): 73-78 .
    4. 金彪,魏巍,陈姗姗,李东俊. SBAS星历改正数及UDRE参数生成算法分析. 武汉大学学报(信息科学版). 2021(01): 111-117 .
    5. 朱轶群,吴继忠. QZSS L6E增强服务改正数支持的PPP性能评估. 测绘科学. 2021(02): 34-41 .
    6. 倪育德,王子成. 地球静止轨道卫星数对广域增强系统性能的影响. 科学技术与工程. 2021(16): 6737-6745 .
    7. 陈姗姗,金彪,赵立谦,夏川茹,王雷雷. SBAS电文时序动态编排算法. 北京航空航天大学学报. 2021(10): 1996-2005 .
    8. 糜晓龙,袁运斌,张宝成. 多频多模GNSS接收机差分相位偏差的短期时变特性. 测绘学报. 2021(10): 1290-1297 .
    9. 董洲洋,朱兆涵,徐健. 全球导航卫星系统时间精度分析. 测绘与空间地理信息. 2021(11): 17-19 .
    10. 寇瑞雄,杨树文. 准天顶卫星系统广播星历精度评定和拟合精度分析. 全球定位系统. 2021(05): 39-47 .
    11. 布金伟,左小清,金立新,常军. BDS/QZSS及其组合系统在中国和日本及周边地区的定位性能评估. 武汉大学学报(信息科学版). 2020(04): 574-585+611 .
    12. 郝茂森,贾小林,曾添,焦文海. QZSS亚米级增强服务和MSAS增强定位性能评估. 导航定位与授时. 2020(05): 91-99 .
    13. 陈健,Yue Dongjie,Zhu Shaolin,Liu Zhiqiang,Dai Jianbiao. Comparison of availability and reliability among different combined-GNSS/RNSS precise point positioning. High Technology Letters. 2020(03): 235-242 .
    14. 赵镇,陈刚,胡志刚. 星基增强系统L1频段信息服务性能分析. 中国地震. 2020(04): 912-923 .
    15. 喻思琪,张小红,郭斐,李昕,潘林,马福建. 卫星导航进近技术进展. 航空学报. 2019(03): 16-37 .
    16. 张玉英,谭荣建,布金伟,李国柱,张东升. BDS+QZSS双系统组合PPP性能评估. 城市勘测. 2019(02): 107-113 .
    17. 何巧,陈伟康. GPS/QZSS双系统组合定位性能分析. 北京测绘. 2019(05): 541-545 .
    18. 江永生. QZSS增强信号对GPS定位增强效果的分析. 北京测绘. 2019(08): 969-973 .
    19. 徐炜,贾雪,王涛. QZSS/IRNSS对BDS在中国定位性能增强的评估. 测绘工程. 2018(01): 31-36 .
    20. 张文峰. 星基增强信号的GPS实时精密单点定位算法. 测绘科学. 2018(08): 62-67 .
    21. 毛琪,麻智超,卢满宏,王松. GAGAN系统在北京地区定位性能测试与评估. 遥测遥控. 2017(04): 53-57 .
    22. 张琳. QZSS导航系统在亚太地区的初步性能评估. 中国惯性技术学报. 2017(05): 618-623 .

    Other cited types(17)

Catalog

    Article views (300) PDF downloads (66) Cited by(39)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return