ZHANG Hongxin, FANG Yutong, LIU Mushui, DONG Binzhi. Dual Recognition Method of Spatial Layout Fusion for Complex Architectural Plan Drawings[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1354-1361. DOI: 10.13203/j.whugis20210323
Citation: ZHANG Hongxin, FANG Yutong, LIU Mushui, DONG Binzhi. Dual Recognition Method of Spatial Layout Fusion for Complex Architectural Plan Drawings[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1354-1361. DOI: 10.13203/j.whugis20210323

Dual Recognition Method of Spatial Layout Fusion for Complex Architectural Plan Drawings

Funds: 

The National Natural Science Foundation of China U1909204

More Information
  • Author Bio:

    ZHANG Hongxin, PhD, associate professor, specializes in computer graphics, cloud computing and artificial intelligence. E-mail: zhx@cad.zju.edu.cn

  • Received Date: June 11, 2021
  • Published Date: September 17, 2021
  •   Objectives  The spatial layout of vectorized complex architectural drawings is widely used in 5G base station construction, smart homes, and AR/VR(augmented reality/virtual reality).
      Methods  To solve the difficulty of identifying the spatial layout of drawings caused by various irregular drawing elements, a high?performance fusion recognition method combining raster image and vector representation is proposed. First, the rasterized representation of architectural plan drawings is used to extract the main development direction, and several enclosed spaces are constructed. Then, the vectorized representation of architectural plan drawings is used and according to the directional and adjacency characteristics of space recognition, the half?wall structure is innovatively proposed to calculate geometric position and topological relationship. The wall layout can be rebuilt as a whole with high precision according to the principle of space duality. Finally, the proposed method and the traditional methods are analyzed on the vector building plan data set of various wall layouts.
      Results  The experimental results show that the proposed fusion dual recognition algorithm is usable and effective for various types of building models.
      Conclusions  It has higher robustness and is less interfered by specific architectural drawing types.
  • [1]
    Yin X T, Wonka P, Razdan A. Generating 3D Building Models from Architectural Drawings: A Survey[J]. IEEE Computer Graphics and Applications, 2009, 29(1): 20-30 doi: 10.1109/MCG.2009.9
    [2]
    Yang J, Jang H, Kim J, et al. Semantic Segmentation in Architectural Floor Plans for Detecting Walls and Doors[C]//11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics(CISP-BMEI), Beijing, China, 2018
    [3]
    Zeng Z L, Li X Z, Yu Y K, et al. Deep Floor Plan Recognition Using a Multi-Task Network with Room-Boundary-Guided Attention [C]//IEEE/ CVF International Conference on Computer Vision (ICCV), Seoul, South Korea, 2019
    [4]
    Lewis R, Séquin C. Generation of 3D Building Models from 2D Architectural Plans[J]. Computer-Aided Design, 1998, 30(10): 765-779 doi: 10.1016/S0010-4485(98)00031-1
    [5]
    Dosch P, Tombre K, Ah-Soon C, et al. A Complete System for the Analysis of Architectural Drawings [J]. International Journal on Document Analysis and Recognition, 2000, 3(2): 102-116 doi: 10.1007/PL00010901
    [6]
    Gimenez L, Robert S, Suard F, et al. Automatic Reconstruction of 3D Building Models from Scanned 2D Floor Plans[J]. Automation in Construction, 2016, 63: 48-56 doi: 10.1016/j.autcon.2015.12.008
    [7]
    Or S H, Wong K H, Yu Y K, et al. Highly Automatic Approach to Architectural Floorplan Image Understanding & Model Generation [C]// VMV2005, Erlangen, Germany, 2005
    [8]
    Ahmed S, Liwicki M, Weber M, et al. Improved Automatic Analysis of Architectural Floor Plans [C]//2011 International Conference on Document Analysis and Recognition, Beijing, China, 2011
    [9]
    Macé S, Locteau H, Valveny E, et al. A System to Detect Rooms in Architectural Floor Plan Images [C]//Proceedings of the 8th IAPR International Workshop on Document Analysis Systems, Boston, Massachusetts, USA, 2010
    [10]
    Rendek J, Masini G, Dosch P, et al. The Search for Genericity in Graphics Recognition Applications: Design Issues of the Qgar Software System[C]//Document Analysis Systems Ⅵ, Berlin, Germany, 2004
    [11]
    Heras L P, Ahmed S, Liwicki M, et al. Statistical Segmentation and Structural Recognition for Floor Plan Interpretation[J]. International Journal on Document Analysis and Recognition, 2014, 17(3): 221-237 doi: 10.1007/s10032-013-0215-2
    [12]
    Jang H, Yu K, Yang J. Indoor Reconstruction from Floorplan Images with a Deep Learning Approach [J]. ISPRS International Journal of Geo Information, 2020, 9(2): 65 doi: 10.3390/ijgi9020065
    [13]
    Dodge S, Xu J, Stenger B. Parsing Floor Plan Images [C]//2017 Fifteenth IAPR International Conference on Machine Vision Applications(MVA), Nagoya, Japan, 2017
    [14]
    Ahmed S, Liwicki M, Weber M, et al. Automatic Room Detection and Room Labeling from Architectural Floor Plans[C]//201210th IAPR International Workshop on Document Analysis Systems, Gold Coast, Australia, 2012
    [15]
    So C, Baciu G, Sun H Q. Reconstruction of 3D Virtual Buildings from 2D Architectural Floor Plans [C]//Proceedings of the ACM Symposium on Virtual Reality Software and Technology, Taipei, Taiwan, China, 1998
    [16]
    Lu T, Tai C L, Su F, et al. A New Recognition Model for Electronic Architectural Drawings[J]. Computer-Aided Design, 2005, 37(10): 1 053-1 069 doi: 10.1016/j.cad.2004.11.004
    [17]
    Boeters R, Ohori K A, Biljecki F, et al. Automatically Enhancing CityGML LOD2 Models with a Corresponding Indoor Geometry[J]. International Journal of Geographical Information Science, 2015, 29(12): 2 248-2 268 doi: 10.1080/13658816.2015.1072201
    [18]
    Goetz M, Zipf A. Towards Defining a Framework for the Automatic Derivation of 3D CityGML Models from Volunteered Geographic Information[J]. International Journal of 3-D Information Modeling, 2012, 1(2): 1-16 doi: 10.4018/ij3dim.2012040101
    [19]
    侯绍洋, 赵学胜, 官亚勤. 利用多分辨率半边进行全球多分辨率DEM无缝表达[J]. 武汉大学学报·信息科学版, 2018, 43(3): 372-378 doi: 10.13203/j.whugis20150152

    Hou Shaoyang, Zhao Xuesheng, Guan Yaqin. Seamless Expression of Global Multi-Resolution DEM Based on Multi-Resolution Half-Edges Structure[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 372-378 doi: 10.13203/j.whugis20150152
    [20]
    Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation [M]//Lecture Notes in Computer Science. Cham: Springer, 2015
    [21]
    Bresenham J E. Algorithm for Computer Control of a Digital Plotter[J]. IBM Systems Journal, 1965, 4(1): 25-30 doi: 10.1147/sj.41.0025
  • Related Articles

    [1]YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120
    [2]HE Huiyou, FANG Jian. Gravity Anomaly Spectrum Analysis Method and Its Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2092-2102. DOI: 10.13203/j.whugis20200510
    [3]XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491
    [4]DU Jinsong, CHEN Chao, LIANG Qing, ZHANG Yi. Lunar Gravity Anomaly and Its Computational Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1369-1373.
    [5]LI Zhenhai, LUO Zhicai, WANG Haihong, ZHONG Bo. Requirements for Gravity Data Within the Given Accuracy of the Interpolated Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1328-1331.
    [6]WU Yunsun, CHAO Dingbo, LI Jiancheng, WANG Zhengtao. Recovery of Ocean Depth Model of South China Sea from Altimetric Gravity Gradient Anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423-1425.
    [7]WANG Haihong, NING Jinsheng, LUO Zhicai, LUO Jia. Separation of Gravity Anomalies Based on Multiscale Edges[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 109-112.
    [8]CHAO Dingbo, YAO Yunsheng, LI Jiancheng, XU Jusheng. Interpretaion on the Tectonics and Characteristics of Altimeter-derived Gravity Anomalies in China South Sea[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 343-347.
    [9]Huang Motao, Guan Zheng, Ouyang Yongzhong. Calculation and Accuracy Estimation of Marine Mean Free-Air Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 327-331.
    [10]Guan Zelin, E Dongchen. The Computation of Geoidal Undulation Deflection of Vertical and Gravity Anomalies Using Clenshaw Summation[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 75-82.
  • Cited by

    Periodical cited type(10)

    1. 费婷婷,丁晓婷,阙翔,林津,林健,王紫薇,刘金福. 基于SBM-DEA与STWR模型的中国能源碳排放效率时空异质性分析. 环境工程. 2024(10): 188-200 .
    2. 熊景华,郭生练,王俊,尹家波,李娜. 长江流域陆地水储量变化及归因研究. 武汉大学学报(信息科学版). 2024(12): 2241-2248 .
    3. 姜栋,赵文吉,王艳慧,万碧玉. 地理加权回归的城市道路时空运行态势空间网格计算方法. 武汉大学学报(信息科学版). 2023(06): 988-996 .
    4. 倪杰,吴通华,赵林,李韧,谢昌卫,吴晓东,朱小凡,杜宜臻,杨成,郝君明. 环北极多年冻土区碳循环研究进展与展望. 冰川冻土. 2019(04): 845-857 .
    5. 刘大元,张雪梅,岳跃民,王克林,邹冬生. 基于Geodetector的广西喀斯特植被覆盖变化及其影响因素分析. 农业现代化研究. 2019(06): 1038-1047 .
    6. 肖屹,何宗宜,苗静,潘峰,杨好. 利用搜索引擎数据模拟疾病空间分布. 测绘通报. 2018(02): 94-98 .
    7. 苗月鲜,方秀琴,吴小君,吴陶樱. 基于GWR模型的江西省山洪灾害区域异同性研究. 水土保持通报. 2018(01): 313-318+327 .
    8. 陈吕凤,朱国平. 基于地理加权模型的南设得兰群岛北部南极磷虾渔场空间分布影响分析. 应用生态学报. 2018(03): 938-944 .
    9. 张雪梅,王克林,岳跃民,童晓伟,廖楚杰,张明阳,姜岩. 生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性. 生态学报. 2017(12): 4008-4018 .
    10. 陈广威,陈吕凤,朱国平,徐玉成,田靖寰,丁博. 南乔治亚岛冬季南极磷虾渔场时空分布及其驱动因子. 生态学杂志. 2017(10): 2803-2810 .

    Other cited types(10)

Catalog

    Article views (1509) PDF downloads (110) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return