XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491
Citation: XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491

Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections

Funds: 

The National High-Tech R&D Program of China (863) No. 2013AA122502

the National Natural Science Foundation of China No. 41274029

More Information
  • Author Bio:

    XING Zhibin, postgraduate, specializes in physical geodesy. E-mail: xzb0312@126.com

  • Received Date: March 02, 2015
  • Published Date: June 04, 2016
  • Vertical deflections can be used tocalculate height anomaly differences, and determine a regional quasi-geoid under the control of GPS leveling points. But the existing typical methods used for structural equation, the elements in coefficient matrix need to be operated one by one, and all of the elements or those on a diagonal must be saved in internal memory for computing. This usually leads to low-speed processing and high-memory occupancy rates. In order to solve these problems, we propose a novel method in the form of a blocked matrix , then processes sparsely (only saving non-zero elements), and finally integrates all the blocked matrixes. This blocked matrix is considered as operational unit in the further steps. Experiments show that: compared to the typical methods, the computation efficiency of our method has been improved at least 2 orders of magnitudes, this makes our method can quickly solve an adjustment problem intractable by traditional methods of computer configuration. Therefore, our method has great reference value when resolving adjustment problems with regular gridded data.
  • [1]
    李建成,陈俊勇,宁津生,等.地球重力场逼近理论与中国2000似大地水准面的确定[M].武汉:武汉大学出版社,2003

    Li Jiancheng, Chen Junyong, Ning Jinsheng, et al. The Earth's Gravity Field Approximation Theory and CQG 2000[M]. Wuhan:Wuhan University Press, 2003
    [2]
    李建成.我国现代高程测定关键技术若干问题的研究及进展[J].武汉大学学报·信息科学版,2007(11):980-987

    Li Jiancheng. Study and Progress in Theories and Crucial Techniques of Modern Height Measurement in China[J]. Geomatics and Information Science of Wuhan University, 2007(11):980-987
    [3]
    朱雷鸣.基于相对高程异常差平差法的区域似大地水准面精化[D].郑州:信息工程大学,2011

    Zhu Leiming. Refining of Quasi-Geoid Based on the Relative Height Anomaly Difference Adjustment[D]. Zhengzhou:Information Engineering University, 2011
    [4]
    李姗姗,吴晓平,张传定,等.顾及地形与完全球面布格异常梯度项改正的区域似大地水准面精化[J].测绘学报,2012,41(4):510-516

    Li Shanshan, Wu Xiaoping, Zhang Chuanding, et al. Regional Quasi-Geoid Refining Considering Corrections of Terrain and Complete Spherical Bouguer Anomaly's Gradient Term[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4):510-516
    [5]
    Huang J,Veronneau M. Canadian Gravimetric Geoid Model 2010[J]. J Geod, 2013, 87:771-790
    [6]
    Andrea Gatti, Mirko Reguzzoni, Venuti G, et al. The Height Datum Problem and the Role of Satellite Gravity Models[J]. J Geod, 2013, 87:15-22
    [7]
    Klees R, Prutkin I. The Combination of GNSS-Levelling Data and Gravimetric (Quasi-) Geoid Heights in the Presence of Noise[J]. J Geod, 2010, 84:731-749
    [8]
    郭东美,许厚泽.应用GPS水准与重力数据联合解算大地水准面[J].武汉大学学报·信息科学版,2011,36(5):621-624

    Guo Dongmei, Xu Houze. Determination of Geoid Using GPS Leveling and Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5):621-624
    [9]
    宋力杰. 测量平差程序设计[M].北京:国防工业出版社,2009

    Song Lijie. Program Design of Surveying Adjustment[M]. Beijing:National Defense Industry Press, 2009
    [10]
    郭飞霄,杨力,刘荣,等.大型稀疏法方程组的代数多重网格解法[J].测绘科学技术学报,2012,29(1):5-8

    Guo Feixiao, Yang Li, Liu Rong, et al. Algebraic Multigrid Solution of Large-Scale Sparse Normal Equation[J]. Journal of Geomatics Science and Technology, 2012, 29(1):5-8
    [11]
    Ge M, Gendt G, Dick G. A New Data Processing Strategy for Huge GNSS Global Networks[J]. J Geod, 2006, 80:199-203
    [12]
    Blewitt, Geoffery. Fixed Point Theorems of GPS Carrier Phase Ambiguity Resolution and Their Application to Massive Network Processing:Ambizap[J]. Journal of Geophysical Research, 2008, 113(B12):36-44
    [13]
    陈宪冬.Ambizap方法在大规模GPS网处理中的应用及结果分析[J].武汉大学学报·信息科学版,2011,36(1):10-13

    Chen Xiandong. Application of Ambizap Algorithm in Large GPS Network and Its Test Results[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1):10-13
    [14]
    崔阳.大规模测量平差分布式计算技术及应[D].郑州:信息工程大学,2013

    Cui Yang. Research on the Theory and Application of Distributed Computing for Large-Scale Survey Adjustment[D]. Zhengzhou:Information Engineering University, 2013
    [15]
    成英燕,程鹏飞,顾旦生,等.天文大地网与GPS2000网联合平差数据处理方法[J].武汉大学学报·信息科学版,2007,32(2):148-151

    Cheng Yingyan, Cheng Pengfei, Gu Dansheng, et al. Data Processing Method for Combined Adjustment of National Astro-Geodetic Network and GPS2000 Network[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2):148-151
    [16]
    姜卫平,赵倩,刘鸿飞,等.子网划分在大规模GNSS基准站网数据处理中的应用[J].武汉大学学报·信息科学版,2011,36(4):389-391

    Jiang Weiping, Zhao Qian, Liu Hongfei, et al. Application of the Sub-network Division in Large Scale GNSS Reference Station Network[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4):389-391
    [17]
    陈俊平,张益泽,谢益炳,等.超大观测网络及多GNSS系统的快速数据处理[J].武汉大学学报·信息科学版,2014,39(3):253-257

    Chen Junping, Zhang Yize, Xie Yibing, et al. Rapid Data Processing of Huge Networks and Multi-GNSS Constellation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3):253-257
    [18]
    宋力杰,欧阳桂崇.超大规模大地网分区平差快速解算方法[J].测绘学报,2003,32(3):204-207

    Song Lijie, Ouyang Guichong. A Fast Method of Solving Partitioned Adjustment for Super Large-Scale Geodetic Network[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(3):204-207
    [19]
    侯秋果.矩阵分块的应用[J].科技信息,2008,13(2):190-191

    Hou Qiuguo. Application of Blocked Matrix[J]. Science & Technology Information, 2008, 13(2):190-191
    [20]
    张志涌.精通MATLAB R2011a[M].北京:北京航空航天大学出版社,2011

    Zhang Zhiyong. Master MATLAB R2011a[M]. Beijing:Beihang University Press, 2011
    [21]
    巩学美,魏代勇.大型稀疏正定法方程非零动态存储三角分解法[J].测绘学报,2000,29(3):209-215

    Gong Xuemei, Wei Daiyong. Non-zero Element Dynamic Memory Trigonometric Decomposition Method of Large-Scale Sparse Positive Definite Normal Equation[J]. Acta Geodaetica et Cartographica Sinica, 2000, 29(3):209-215
    [22]
    隋立芬,宋力杰,柴洪洲.误差理论与测量平差基础[M].北京:测绘出版社,2010

    Sui Lifen, Song Lijie, Chai Hongzhou. Error Theory and Foundation of Surveying Adjustment[M]. Beijing:Surveying and Mapping Press, 2010
  • Related Articles

    [1]ZHENG Zhaobao, ZHENG Hong. Study and Analysis of Chemical Reaction Optimization in Image Segmentation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1224-1228.
    [2]XU Xibao, YANG Guishan, ZHANG Jianming. Urban Land Use Optimization in Lanzhou,China[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 878-881.
    [3]WANG Hanhua, LIU Yanfang. Optimal Allocation of Land Resources Based on MOP-CA[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 174-177.
    [4]ZHU Jianghan, LI Xi, MAO Chilong, ZHANG Lining. Elevations Selection Approach of Area Target Observation Task Using Satellites Resource[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 868-870.
    [5]CHEN Ziyi, KANG Lishan. Multi-Parent Crossover Evolutionary Algorithm for Constrained Optimization[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 440-443.
    [6]SUN Haiyan, LI Fei, CHAO Dingbo. Optimization of the Fundamental Gravity Network of China[J]. Geomatics and Information Science of Wuhan University, 2000, 25(6): 496-499.
    [7]Meng Lingkui, Bian Fuling, Chen Xiaoning. GIS Supported Study of Optimizing Design Models on Urban Rain Pipe Systems[J]. Geomatics and Information Science of Wuhan University, 1996, 21(4): 361-365.
    [8]Peng Xian jin. On optimal Design of Survey Networks[J]. Geomatics and Information Science of Wuhan University, 1993, 18(3): 89-94.
    [9]Ge Maorong Qinghua University. On methods of Optimal Simulation of Areal Geodetic Networks[J]. Geomatics and Information Science of Wuhan University, 1990, 15(4): 91-97.
    [10]Zhang Zhenglu, Li Xiaodong. A New Method for the Optimization of Monitoring Networks[J]. Geomatics and Information Science of Wuhan University, 1989, 14(2): 1-9.
  • Cited by

    Periodical cited type(3)

    1. 仵倩玉,王密,陈俊博. 语义描述驱动的启明星一号自主任务规划方法. 武汉大学学报(信息科学版). 2023(08): 1264-1272 .
    2. 王昊泽,金小军,侯聪,周立山,徐兆斌,金仲和. 基于抗差自适应估计的微纳卫星相对定位算法. 浙江大学学报(工学版). 2023(11): 2325-2336 .
    3. 樊育,刘莹莹,周军. 面向多星区域观测调度的改进型自适应遗传算法. 中国空间科学技术. 2021(01): 38-47 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return