LI Zhicai, DING Kaihua, ZHANG Peng, WEN Yangmao, ZHAO Lijiang, CHEN Jianfeng. Coseismic Deformation and Slip Distribution of 2021 Mw 7.4 Madoi Earthquake from GNSS Observation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1489-1497. DOI: 10.13203/j.whugis20210301
Citation: LI Zhicai, DING Kaihua, ZHANG Peng, WEN Yangmao, ZHAO Lijiang, CHEN Jianfeng. Coseismic Deformation and Slip Distribution of 2021 Mw 7.4 Madoi Earthquake from GNSS Observation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1489-1497. DOI: 10.13203/j.whugis20210301

Coseismic Deformation and Slip Distribution of 2021 Mw 7.4 Madoi Earthquake from GNSS Observation

Funds: 

The National Natural Science Foundation of China 41774011

The National Natural Science Foundation of China 41874011

The National Natural Science Foundation of China 41804038

the National Key Research and Development Program of China 2016YFB0501405

More Information
  • Author Bio:

    LI Zhicai, PhD,senior engineer, specializes in GNSS data processing and geodesy inversion. E-mail: zcli@ngcc.cn

  • Corresponding author:

    ZHANG Peng, PhD, senior engineer, E-mail: zhangpeng@ngcc.cn

  • Received Date: June 07, 2021
  • Published Date: October 04, 2021
  •   Objectives  At 2:00 on May 22, 2020 (UTC+8), an Mw 7.4 earthquake struck Madoi County, Qinghai Province, China. The earthquake occurred in the unattended area of the Qinghai Tibet Plateau, with less injuries and building damage, but caused obvious surface rupture.
      Methods  9 high frequency continuously operating reference stations(CORS) data with 1 Hz sampling rate were collected near the epicenter, and the co-seismic deformation was derived from high frequency observation data with 1 hour before and after the earthquake based on precise point positioning with ambiguity resolution(PPP-AR). The low frequency data with 30 s sampling of 12 CORS around Madoi County were collected before and after the earthquake within 3 days to solve for the permeant co-seismic deformation based on the non-differential precise point positioning(PPP).
      Results  The comparison between these two kinds of co-seismic deformation illustrates that the co-seismic deformation from the high frequency (1 Hz) data is slightly smaller than that of the low frequency (30 s) data. The maximum observed global navigation satellite system(GNSS) co-seismic displacement is about 0.6 m.Further, the fault geometry and slip distribution of the earthquake were inverted based on the permanent co-seismic deformation.
      Conclusions  The inversion results indicate that the Madoi earthquake is a typical left-lateral strike slip event (rake angle: -10.90°), with a strike of 278.49°and dip angle of 64.38°. The rupture length is about 138.72 km. The slip distribution reveals that more than 3 m slip is mainly concentrated in the eastern asperity with the depth of less than 18 km with the maximum slip of 4.2 m. The geodetic seismic moment is about 1.85×1020 Nm, equivalent to Mw 7.45, which is slightly larger than the result of United States Geological Survey(USGS) from seismic waves.
  • [1]
    中国地震台网中心. 青海果洛州玛多县7.4级地震[EB/OL]. (2021-06-02). https://news.ceic.ac.cn/CC20210522020411.html

    China Earthquake Network Center. M 7. 4-Madoi, Guoluo, Qinghai, China[EB/OL]. (2021-06-02). https://news.ceic.ac.(cn/CC20210522020411.html
    [2]
    Fang R, Shi C, Song W, et al. Determination of Earthquake Magnitude Using GPS Displacement Waveforms from Realtime Precise Point Positioning[J]. Geophysical Journal International, 2014, 196(1): 461-472 doi: 10.1093/gji/ggt378
    [3]
    Branzanti M, Colosimo G, Crespi M, et al. GPS Near-Real-Time Coseismic Displacements for the Great Tohoku-Oki Earthquake[J]. IEEE Geoscience Remote Sensing Letter, 2013, 10(2): 372-376 doi: 10.1109/LGRS.2012.2207704
    [4]
    Chen K, Ge M, Babeyko A, et al. Retrieving Real-Time Coseismic Displacements Using GPS/ GLONASS: A Preliminary Report from the Septem ber 2015 Mw 8. 3 Illapel Earthquake in Chile[J]. Geophysical Journal International, 2016, 206(2): 941-953 doi: 10.1093/gji/ggw190
    [5]
    李志才, 张鹏, 蒋志浩, 等. 基于单历元方法研究汶川8.0级地震对中国大陆的同震变形[J]. 测绘科学, 2009, 34(5): 47-48

    Li Zhicai, Zhang Peng, Jiang Zhihao, et al. Research on Chinese Continent Coseismic Deformation Effect due to Wenchuan Ms 8.0 Earthquake Based on Single Epoch Method[J]. Science of Surveying and Mapping, 2009, 34(5): 47-48
    [6]
    Jiang Z, Wang M, Wang Y, et al. GPS Constrained Coseismic Source and Slip Distribution of the 2013 Mw 6. 6 Lushan, China, Earthquake and Its Tectonic Implications[J]. Geophysical Research Letters, 2014, 41: 407-413 doi: 10.1002/2013GL058812
    [7]
    Wen Y, Guo Z, Xu C, et al. Coseismic and Postseismic Deformation Associated with the 2018 Mw 7. 9 Kodiak, Alaska, Earthquake from Low-Rate and High-Rate GPS Observations[J]. Bulletin of Seismological Society of America, 2019, 109(3): 908-918 doi: 10.1785/0120180246
    [8]
    Ding K, Freymueller J T, Wang Q, et al. Coseismic and Early Postseismic Deformation of the 5 January 2013 Mw 7. 5 Craig Earthquake from Static and Kinematic GPS Solutions[J]. Bulletin of Seismological Society of America, 2015, 105(2B): 1 153-1 164 doi: 10.1785/0120140172
    [9]
    Zheng K, Zhang X, Li X, et al. Capturing Coseismic Displacement in Real Time with Mixed Singleand Dual-Frequency Receivers: Application to the 2018 Mw 7. 9 Alaska Earthquake[J]. GPS Solutions, 2018, DOI: 10.1007/s10291-018-0794-y
    [10]
    Zhong S, Xu C, Yi L, et al. Focal Mechanisms of the 2016 Central Italy Earthquake Sequence Inferred from High-Rate GPS and Broadband Seismic Wave Forms[J]. Remote Sensing, 2018, 10(4): 1-18 http://www.onacademic.com/detail/journal_1000040544025910_1fdd.html
    [11]
    李志才, 张鹏, 温扬茂, 等. 基于GPS和海底基准点观测形变反演日本大地震(Mw 9. 0)同震断层滑动分布[J]. 武汉大学学报∙信息科学版, 2013, 38(1): 40-43 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201301010.htm

    Li Zhicai, Zhang Peng, Wen Yangmao, et al. Coseismic Slip and Rupture of the 2011 Mw 9. 0 Tohoku Earthquake from GPS and Sea-Floor Point Observations[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 40-43 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201301010.htm
    [12]
    李志才, 张鹏, 金双根, 等. 基于GPS观测数据的汶川地震断层形变反演分析[J]. 测绘学报, 2009, 38(2): 108-113 doi: 10.3321/j.issn:1001-1595.2009.02.003

    Li Zhicai, Zhang Peng, Jin Shuanggen, et al. Wen- chuan Earthquake Deformation Fault Inversion and Analysis Based on GPS Observations[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(2): 108-113 doi: 10.3321/j.issn:1001-1595.2009.02.003
    [13]
    Li Z, Wen Y, Zhang P, et al. Joint Inversion of GPS, Leveling, and InSAR Data for the 2013 Lushan(China)Earthquake and Its Seismic Hazard Implications[J]. Remote Sensing, 2020, 12(4): 715 doi: 10.3390/rs12040715
    [14]
    Zhang G, Hetland E, Shan X, et al. Triggered Slip on a Back Reverse Fault in the Mw 6. 8 2013 Lushan, China Earthquake Revealed by Joint Inversion of Local Strong Motion Accelerograms and Geodetic Measurements[J]. Tectonophysics, 2016, 672/ 673: 24-33
    [15]
    Huang Y, Qiao X, Freymueller J T, et al. Fault Geometry and Slip Distribution of the 2013 Mw 6. 6 Lushan Earthquake in China Constrained by GPS, InSAR, Leveling, and Strong Motion Data[J]. Journal of Geophysical Research Solid Earth, 2019, 124: 7 341-7 353 doi: 10.1029/2019JB017451
    [16]
    陈明, 武军郦, 李志才. 国家卫星导航定位基准站建设[J]. 地理信息世界, 2018, 25(1): 42-46 doi: 10.3969/j.issn.1672-1586.2018.01.009

    Chen Ming, Wu Junli, Li Zhicai. Construction of the National GNSS Continuous Operation Reference Stations[J]. Geomatics World, 2018, 25(1): 42-46 doi: 10.3969/j.issn.1672-1586.2018.01.009
    [17]
    邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学(D辑): 地球科学, 2002, 32(12): 1 020-1 030 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm

    Deng Qidong, Zhang Peizhen, Ran Yongkang, et al. Basic Characteristics of Chinese Active Tectonics [J]. Science in China(Series D): Earth Sciences, 2002, 32(12): 1 020-1 030 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm
    [18]
    张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑): 地球科学, 2003, 33(S): 12-20 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm

    Zhang Peizhen, Deng Qidong, Zhang Guomin, et al. Active Tectonic Blocks and Strong Earthquake Activities in the Continent of China[J]. Science in China(Series D): Earth Sciences, 2003, 33(S): 12-20 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm
    [19]
    邓起东, 高翔, 陈桂华, 等. 青藏高原昆仑-汶川地震系列与巴颜喀喇断块的最新活动[J]. 地学前缘, 2010, 17(5): 163-178 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201005017.htm

    Deng Qidong, Gao Xiang, Chen Guihua, et al. Recent Tectonic Activity of Bayankala Fault-Block and the Kunlun-Wenchuan Earthquakes Series of the Tibetan Plateau[J]. Earth Science Frontiers, 2010, 17(5): 163-178 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201005017.htm
    [20]
    徐锡伟, 闻学泽, 陈桂华, 等. 巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J]. 中国科学(D辑): 地球科学, 2008, 38(5): 529-542 doi: 10.3321/j.issn:1006-9267.2008.05.001

    Xu Xiwei, Wen Xueze, Chen Guihua, et al. Discovery of Longriba Fault Zone in Eastern Bayankala Block, China and Its Tectonic Implication[J]. Science in China(Series D): Earth Sciences, 2008, 38(5): 529-542 doi: 10.3321/j.issn:1006-9267.2008.05.001
    [21]
    Gan W, Zhang P, Shen Z K, et al. Present-Day Crustal Motion Within the Tibetan Plateau Inferred from GPS Measurements[J]. Journal of Geophysical Research Solid Earth, 2007, 112(B8): 582-596 http://perso-sdt.univ-brest.fr/~jacdev/pdf/gan07_Tibet_GPS.pdf
    [22]
    王椿镛, 楼海, 吕智勇, 等. 青藏高原东部地壳上地幔S波速度结构: 下地壳流的深部环境[J]. 中国科学(D辑): 地球科学, 2008, 38(1): 22-32 doi: 10.3321/j.issn:1006-9267.2008.01.003

    Wang Chunyong, Lou Hai, Lü Zhiyong, et al. S-wave Crustal and Upper Mantle's Velocity Structure in the Eastern Tibetan Plateau-Deep Environment of Lower Crustal Flow[J]. Science in China: Series D(Earth Sciences), 2008, 38(1): 22-32 doi: 10.3321/j.issn:1006-9267.2008.01.003
    [23]
    Bai D, Unsworth M J, Meju M J, et al. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging[J]. Nature Geoscience, 2010, 3(5): 358-362 doi: 10.1038/ngeo830
    [24]
    李冲, 李建成, 黄瑞金, 等. 青藏高原东部地壳物质流变模型及汶川地震机理探讨[J]. 武汉大学学报∙信息科学版, 2015, 40(6): 810-815 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201506020.htm

    Li Chong, Li Jiancheng, Huang Ruijin, et al. Discussion of Crustal Flow Beneath the Eastern Tibetan Plateau and Mechanism of the Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 810-815 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201506020.htm
    [25]
    中国地震局震害防御司. 中国近代地震目录(公元1912— 1990年)[M]. 北京: 地震出版社, 1999

    Department of Earthquake Disaster Prevention, State Seismological Bureau. The Catologure of Chinese Historical Strong Earthquakes 1912—1990)[M]. Beijing: Seismological Press, 1999
    [26]
    Xu X, Chen W, Ma W, et al. Surface Rupture of the Kunlunshan Earthquake(Ms 8. 1), Northern Tibetan Plateau, China[J]. Seismological Research Letter, 2002, 73(6): 884-892 doi: 10.1785/gssrl.73.6.884
    [27]
    闻学泽, 杜方, 张培震, 等. 巴颜喀拉块体北和东边界大地震序列的关联性与2008年汶川地震[J]. 地球物理学报, 2011, 54(3): 706-716 doi: 10.3969/j.issn.0001-5733.2011.03.010

    Wen Xueze, Du Fang, Zhang Peizhen, et al. Correlation of Major Earthquake Sequences on the Northern and Eastern Boundaries of the Bayan-Har Block, and Its Relation to the 2008 Wenchuan Earthquake[J]. Chinese Journal of Geophysics, 2011, 54(3): 706-716 doi: 10.3969/j.issn.0001-5733.2011.03.010
    [28]
    高翔, 邓起东. 巴颜喀喇断块边界断裂强震活动分析[J]. 地质学报, 2013, 87(1): 9-19 doi: 10.3969/j.issn.0001-5717.2013.01.002

    Gao Xiang, Deng Qidong. Activity Analysis of Large Earthquake in Boundary Faults Around the Bayankaka Faulting Block[J]. Acta Geologica Sinica, 2013, 87(1): 9-19 doi: 10.3969/j.issn.0001-5717.2013.01.002
    [29]
    詹艳, 梁明剑, 孙翔羽, 等. 2021年5月22日青海玛多Ms 7. 4级地震深部环境及发震构造模式[J]. 地球物理学报, 2021, 64(7): 2 232-2 252 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202107002.htm

    Zhan Yan, Liang Mingjian, Sun Xiangyu, et al. Deep Structure and Seismogenic Pattern of the 2021, 5. 22 Madoi(Qinghai)Ms 7. 4 Earthquake[J]. Chinese Journal of Geophysics, 2021, 64(7): 2 232-2 252 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202107002.htm
    [30]
    Geng J, Chen X, Pan Y, et al. PRIDE PPP-AR: An Open-Source Software for GPS PPP Ambiguity Resolution[J]. GPS Solutions, 2019, 23: 91 doi: 10.1007/s10291-019-0888-1
    [31]
    Dach R, Lutz S, Walser P, et al. Bernese GNSS Software Version 5. 2. User Manual[R]. Switzerland: Bern Open Publishing, 2015
    [32]
    Clarke P J, Paradissis D, Briole P, et al. Geodetic Investigation of the 13 May 1995 Kozani-Grevena (Greece) Earthquake[J]. Geophysical Research Letters, 1997, 24(6): 707-710 http://www.onacademic.com/detail/journal_1000035777530210_0e63.html
    [33]
    USGS. M 7. 3-Southern Qinghai, China[EB/ OL]. [2021-06-02]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000e54r/executive
    [34]
    GCMT. Global CMT Catalog Search[EB/OL]. [2021-06-02]. https://www.globalcmt.org/CMT-search.html
  • Related Articles

    [1]YANG Mengshi, LIAO Mingsheng, CHANG Ling, HANSSEN Ramon F.. Interpretation of Multi-epoch InSAR Deformation for Urban Scenes: A Problem Analysis and Literature Review[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1643-1660. DOI: 10.13203/j.whugis20230289
    [2]PENG Ying, XU Caijun, LIU Yang. Deriving 3D Coseismic Deformation Field of 2017 Jiuzhaigou Earthquake with Elastic Dislocation Model and InSAR Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1896-1905. DOI: 10.13203/j.whugis20200289
    [3]BIAN Weiwei, WU Jicang, ZHANG Lei, GAO Yu. Temporal and Spatial Statistical Analysis of Strong Earthquakes and Spatial Distribution Characteristics of InSAR Coseismic Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 875-886. DOI: 10.13203/j.whugis20220176
    [4]WANG Zhidong, WEN Xuehu, TANG Wei, LIU Hui, WANG Defu. Early Detection of Geological Hazards in Longmenshan-Dadu River Area Using Various InSAR Techniques[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 451-459. DOI: 10.13203/j.whugis20190064
    [5]CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461
    [6]WEI Erhu, WAN Lihua, JIN Shuanggen, LIU Jingnan. Estimation of ERP with Combined Observations of GNSS and SLR[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 581-585. DOI: 10.13203/j.whugis20120213
    [7]XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391.
    [8]Dongmei, XU Houze. Determination of Geoid Using GPS Leveling and Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 621-624.
    [9]XU Caijun, JIANG Guoyan, WANG Hao, WEN Yangmao. Analyzing InSAR Results Using GIS and Its Application on the Coseismic Interpretation of Mw7.9 Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 379-383.
    [10]WU Yunsun, LI Zhenhong, LIU Jingnan, XU Caijun. Atmospheric Correction Models for InSAR Measurements[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 862-867.
  • Cited by

    Periodical cited type(2)

    1. Xupeng Liu,Guangyu Xu,Mingkai Chen,Tengxu Zhang. Factors influencing the effectiveness of SM-VCE method in solving 3D surface deformation. Geodesy and Geodynamics. 2025(01): 55-66 .
    2. 王崇,童立强,吴振宇,王正阳,彭云,陈雪,朱家辉,胡成磊,穆传周. 顾及SAR影像几何畸变定量分析的三维形变速率求解方法. 测绘科学. 2024(02): 76-88 .

    Other cited types(0)

Catalog

    Article views (2052) PDF downloads (293) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return