SONG Weiwei, HE Chengpeng, GU Shengfeng. Performance Analysis of Ionospheric Enhanced PPP-RTK in Different Latitudes[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1832-1842. DOI: 10.13203/j.whugis20210243
Citation: SONG Weiwei, HE Chengpeng, GU Shengfeng. Performance Analysis of Ionospheric Enhanced PPP-RTK in Different Latitudes[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1832-1842. DOI: 10.13203/j.whugis20210243

Performance Analysis of Ionospheric Enhanced PPP-RTK in Different Latitudes

Funds: 

The National Key Research and Development Program of China 2017YFB0503401

the National Natural Science Foundation of China 42174029

the Joint Foundation of Ministry of Education 6141A02011907

More Information
  • Author Bio:

    SONG Weiwei, PhD, professor, specializes in GNSS data processing. E-mail: sww@whu.edu.cn

  • Corresponding author:

    GU Shengfeng, PhD, associate professor. E-mail: gsf@whu.edu.cn

  • Received Date: September 05, 2021
  • Published Date: December 04, 2021
  •   Objectives  Slow convergence has always been an important factor of limiting the development of precise point positioning (PPP). Studies have shown that the convergence speed of PPP can be significantly improved with high-precision ionospheric delay correction, and then to achieve PPP-real time kinematic (PPP-RTK). At present, the ionosphere in the regional PPP-RTK mainly adopts the satellite-based ionospheric model with polynomial function (SIM_POLY) and the satellite-based ionospheric model with inverse distance weight function (SIM_IDW) for construction.
      Methods  In order to verify the modeling accuracy of the above two models at different latitudes, this paper first used the observation data of Guangdong, Hubei and Hebei provinces to establish ionospheric delay models, and then applied the above models to float and fixed solutions PPP under single GPS and GPS+BDS systems. Finally the results were compared with IFPPP (ionosphere-free PPP) and CODE GIM (Centre for Orbit Determination in Europe Global Ionospheric Map, CODG) correction.
      Results  Experimental results showed that in the low-latitude provinces, SIM_IDW model slightly outperformed SIM_POLY model, but there was no significant difference in the middle and high latitude provinces. Compared with IFPPP and CODG correction, PPP under SIM_IDW and SIM_POLY correction has a better performance. Besides, Hebei province achieved the fastest convergence speed compared with Guangdong and Hubei provinces, and compared with IFPPP, the positioning accuracy in single GPS solution under SIM_IDW and SIM_POLY model correction is improved by 43.7% and 43.0%, respectively. In the fixed PPP, the success rate of first epoch to fix the ambiguity of PPP-RTK under the correction of SIM_IDW and SIM_POLY models in GPS+BDS solution could reach 86.09% and 89.13% in Hebei province. Besides, positioning accuracy could converge to 5 cm in the first epoch in horizontal direction, and converge to 10 m within 1.5 minutes in vertical direction. The positioning accuracy after convergence of GPS+BDS PPP-RTK had a significant improvement compared with single GPS, which was 1.3 cm in horizontal direction and 3.5 cm in three-dimensional direction under the correction of SIM_IDW and SIM_POLY models.
      Conclusions  Establishing a regional ionospheric model through SIM_IDW and SIM_POLY models to realize PPP-RTK can significantly shorten the PPP convergence time and improve positioning accuracy.
  • [1]
    Zumberge J F, Heflin M B, Jefferson D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5 005-5 017
    [2]
    Wabbena G, Schmitz M, Bagge A. PPP-RTK: Precise Point Positioning Using State-Space Representation in RTK Networks[C]// The 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Long Beach, CA, USA, 2005
    [3]
    Li X X, Zhang X H, Ge M R. Regional Reference Network Augmented Precise Point Positioning for Instantaneous Ambiguity Resolution[J]. Journal of Geodesy, 2011, 85(3): 151-158 doi: 10.1007/s00190-010-0424-0
    [4]
    史永忠, 朱新杰, 鄢建国, 等. 多模数据融合的单频RTK算法研究与软件实现[J]. 测绘地理信息, 2021, 46(3): 10-13

    Shi Yongzhong, Zhu Xinjie, Yan Jianguo, et al. Single Frequency RTK Algorithm for Multimode Data Fusion and Its Software Implementation[J]. Journal of Geomatics, 2021, 46(3): 10-13
    [5]
    Laurichesse D, Mercier F, Berthias J P, et al. Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination[J]. Navigation, 2009, 56(2): 135-149 doi: 10.1002/j.2161-4296.2009.tb01750.x
    [6]
    Collins P, Bisnath S, Lahaye F, et al. Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing[J]. Navigation, 2010, 57(2): 123-135 doi: 10.1002/j.2161-4296.2010.tb01772.x
    [7]
    Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning(PPP)with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399 doi: 10.1007/s00190-007-0187-4
    [8]
    Teunissen P J G, Khodabandeh A. Review and Principles of PPP-RTK Methods[J]. Journal of Geodesy, 2015, 89(3): 217-240 doi: 10.1007/s00190-014-0771-3
    [9]
    Gao Y, Shen X. Improving Ambiguity Convergence in Carrier Phase-Based Precise Point Positioning [C]// The 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001), Salt Lake City, UT, USA, 2001
    [10]
    Gu S F, Shi C, Lou Y D, et al. Ionospheric Effects in Uncalibrated Phase Delay Estimation and Ambiguity-Fixed PPP Based on Raw Observable Model [J]. Journal of Geodesy, 2015, 89(5): 447-457 doi: 10.1007/s00190-015-0789-1
    [11]
    姚宜斌, 冯鑫滢, 彭文杰, 等. 基于CORS的区域大气增强产品对实时PPP的影响[J]. 武汉大学学报·信息科学版, 2019, 44(12): 1 739-1 748 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201912001.htm

    Yao Yibin, Feng Xinying, Peng Wenjie, et al. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1 739-1 748 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201912001.htm
    [12]
    Li Z, Chen W, Ruan R G, et al. Evaluation of PPP-RTK Based on BDS-3/BDS-2/GPS Observations: A Case Study in Europe[J]. GPS Solutions, 2020, 24(2): 1-12 doi: 10.1007/s10291-019-0948-6
    [13]
    袁菲, 李英冰, 缪格. IGS电离层产品的时空特性研究[J]. 全球定位系统, 2017, 42(1): 44-48 https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201701009.htm

    Yuan Fei, Li Yingbing, Miao Ge. Research on the Spatio-Temporal Characteristics of IGS Ionospheric Products[J]. GNSS World of China, 2017, 42 (1): 44-48 https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201701009.htm
    [14]
    辜声峰. 多频GNSS非差非组合精密数据处理理论及其应用[D]. 武汉: 武汉大学, 2013

    Gu Shengfeng. Research on the Zero-Difference Un-Combined Data Processing Model for Multi-Frequency GNSS and Its Applications[D]. Wuhan: Wuhan University, 2013
    [15]
    Shi C, Gu S F, Lou Y D, et al. An Improved Approach to Model Ionospheric Delays for Single-Frequency Precise Point Positioning[J]. Advances in Space Research, 2012, 49(12): 1 698-1 708 http://www.onacademic.com/detail/journal_1000035026698210_a0e6.html
    [16]
    Zhao Q L, Wang Y T, Gu S F, et al. Refining Ionospheric Delay Modeling for Undifferenced and Uncombined GNSS Data Processing[J]. Journal of Geodesy, 2019, 93(4): 545-560 doi: 10.1007/s00190-018-1180-9
    [17]
    周仁宇, 胡志刚, 苏牡丹, 等. 北斗全球系统广播电离层模型性能初步评估[J]. 武汉大学学报·信息科学版, 2019, 44(10): 1 457-1 464 doi: 10.13203/j.whugis20170428

    Zhou Renyu, Hu Zhigang, Su Mudan, et al. Preliminary Performance Evaluation of BeiDou Global Ionospheric Delay Correction Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1 457-1 464 doi: 10.13203/j.whugis20170428
    [18]
    胡弦. 多模地基GNSS区域电离层建模及验证分析[D]. 武汉: 武汉大学, 2017

    Hu Xian. Regional Ionospheric Modeling Based on the Data of Ground-Based Multi-GNSS and Validation[D]. Wuhan: Wuhan University, 2017
    [19]
    Shi C, Guo S W, Gu S F, et al. Multi-GNSS Satellite Clock Estimation Constrained with Oscillator Noise Model in the Existence of Data Discontinuity[J]. Journal of Geodesy, 2019, 93(4): 515-528 doi: 10.1007/s00190-018-1178-3
    [20]
    Gu S F, Wang Y T, Zhao Q L, et al. BDS-3 Differential Code Bias Estimation with Undifferenced Uncombined Model Based on Triple-Frequency Observation[J]. Journal of Geodesy, 2020, 94(4): 1-13 doi: 10.1007%2Fs00190-020-01364-w
  • Cited by

    Periodical cited type(8)

    1. 高奎亮,刘冰,余旭初,余岸竹,孙一帆. 面向高光谱影像分类的网络结构自动搜索方法. 武汉大学学报(信息科学版). 2024(02): 225-235 .
    2. 崔林林,仙巍,柳锦宝. 产学研背景下遥感科学与技术专业”遥感原理与应用”实验教学改革探讨. 电脑与信息技术. 2023(01): 92-95 .
    3. 李杰,曾超,刘汇慧,李慧芳. 地学大数据背景下遥感课程的多阶段进阶混合式教学模式探索. 测绘通报. 2023(S2): 131-136 .
    4. 薛冰,赵冰玉,李京忠. 地理学视角下城市复杂性研究综述——基于近20年文献回顾. 地理科学进展. 2022(01): 157-172 .
    5. 桑国庆,唐志光,毛克彪,邓刚,王靖文,李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例. 作物学报. 2022(09): 2409-2420 .
    6. 徐恩恩,郭颖,陈尔学,李增元,赵磊,刘清旺. 基于无人机LiDAR和高空间分辨率卫星遥感数据的区域森林郁闭度估测模型. 武汉大学学报(信息科学版). 2022(08): 1298-1308 .
    7. 孙玉梅,刘昱豪,边占新,孙亮,陈敬周. 深度学习PaddlePaddle框架支持下的遥感智能视觉平台研究与实现. 测绘通报. 2021(11): 65-69+75 .
    8. 陈晓峰. 光学遥感立体测绘技术及其发展趋势研究. 光源与照明. 2021(11): 69-71 .

    Other cited types(8)

Catalog

    Article views (1770) PDF downloads (270) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return