SONG Weiwei, HE Chengpeng, GU Shengfeng. Performance Analysis of Ionospheric Enhanced PPP-RTK in Different Latitudes[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1832-1842. DOI: 10.13203/j.whugis20210243
Citation: SONG Weiwei, HE Chengpeng, GU Shengfeng. Performance Analysis of Ionospheric Enhanced PPP-RTK in Different Latitudes[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1832-1842. DOI: 10.13203/j.whugis20210243

Performance Analysis of Ionospheric Enhanced PPP-RTK in Different Latitudes

Funds: 

The National Key Research and Development Program of China 2017YFB0503401

the National Natural Science Foundation of China 42174029

the Joint Foundation of Ministry of Education 6141A02011907

More Information
  • Author Bio:

    SONG Weiwei, PhD, professor, specializes in GNSS data processing. E-mail: sww@whu.edu.cn

  • Corresponding author:

    GU Shengfeng, PhD, associate professor. E-mail: gsf@whu.edu.cn

  • Received Date: September 05, 2021
  • Published Date: December 04, 2021
  •   Objectives  Slow convergence has always been an important factor of limiting the development of precise point positioning (PPP). Studies have shown that the convergence speed of PPP can be significantly improved with high-precision ionospheric delay correction, and then to achieve PPP-real time kinematic (PPP-RTK). At present, the ionosphere in the regional PPP-RTK mainly adopts the satellite-based ionospheric model with polynomial function (SIM_POLY) and the satellite-based ionospheric model with inverse distance weight function (SIM_IDW) for construction.
      Methods  In order to verify the modeling accuracy of the above two models at different latitudes, this paper first used the observation data of Guangdong, Hubei and Hebei provinces to establish ionospheric delay models, and then applied the above models to float and fixed solutions PPP under single GPS and GPS+BDS systems. Finally the results were compared with IFPPP (ionosphere-free PPP) and CODE GIM (Centre for Orbit Determination in Europe Global Ionospheric Map, CODG) correction.
      Results  Experimental results showed that in the low-latitude provinces, SIM_IDW model slightly outperformed SIM_POLY model, but there was no significant difference in the middle and high latitude provinces. Compared with IFPPP and CODG correction, PPP under SIM_IDW and SIM_POLY correction has a better performance. Besides, Hebei province achieved the fastest convergence speed compared with Guangdong and Hubei provinces, and compared with IFPPP, the positioning accuracy in single GPS solution under SIM_IDW and SIM_POLY model correction is improved by 43.7% and 43.0%, respectively. In the fixed PPP, the success rate of first epoch to fix the ambiguity of PPP-RTK under the correction of SIM_IDW and SIM_POLY models in GPS+BDS solution could reach 86.09% and 89.13% in Hebei province. Besides, positioning accuracy could converge to 5 cm in the first epoch in horizontal direction, and converge to 10 m within 1.5 minutes in vertical direction. The positioning accuracy after convergence of GPS+BDS PPP-RTK had a significant improvement compared with single GPS, which was 1.3 cm in horizontal direction and 3.5 cm in three-dimensional direction under the correction of SIM_IDW and SIM_POLY models.
      Conclusions  Establishing a regional ionospheric model through SIM_IDW and SIM_POLY models to realize PPP-RTK can significantly shorten the PPP convergence time and improve positioning accuracy.
  • [1]
    Zumberge J F, Heflin M B, Jefferson D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5 005-5 017
    [2]
    Wabbena G, Schmitz M, Bagge A. PPP-RTK: Precise Point Positioning Using State-Space Representation in RTK Networks[C]// The 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Long Beach, CA, USA, 2005
    [3]
    Li X X, Zhang X H, Ge M R. Regional Reference Network Augmented Precise Point Positioning for Instantaneous Ambiguity Resolution[J]. Journal of Geodesy, 2011, 85(3): 151-158 doi: 10.1007/s00190-010-0424-0
    [4]
    史永忠, 朱新杰, 鄢建国, 等. 多模数据融合的单频RTK算法研究与软件实现[J]. 测绘地理信息, 2021, 46(3): 10-13

    Shi Yongzhong, Zhu Xinjie, Yan Jianguo, et al. Single Frequency RTK Algorithm for Multimode Data Fusion and Its Software Implementation[J]. Journal of Geomatics, 2021, 46(3): 10-13
    [5]
    Laurichesse D, Mercier F, Berthias J P, et al. Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination[J]. Navigation, 2009, 56(2): 135-149 doi: 10.1002/j.2161-4296.2009.tb01750.x
    [6]
    Collins P, Bisnath S, Lahaye F, et al. Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing[J]. Navigation, 2010, 57(2): 123-135 doi: 10.1002/j.2161-4296.2010.tb01772.x
    [7]
    Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning(PPP)with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399 doi: 10.1007/s00190-007-0187-4
    [8]
    Teunissen P J G, Khodabandeh A. Review and Principles of PPP-RTK Methods[J]. Journal of Geodesy, 2015, 89(3): 217-240 doi: 10.1007/s00190-014-0771-3
    [9]
    Gao Y, Shen X. Improving Ambiguity Convergence in Carrier Phase-Based Precise Point Positioning [C]// The 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001), Salt Lake City, UT, USA, 2001
    [10]
    Gu S F, Shi C, Lou Y D, et al. Ionospheric Effects in Uncalibrated Phase Delay Estimation and Ambiguity-Fixed PPP Based on Raw Observable Model [J]. Journal of Geodesy, 2015, 89(5): 447-457 doi: 10.1007/s00190-015-0789-1
    [11]
    姚宜斌, 冯鑫滢, 彭文杰, 等. 基于CORS的区域大气增强产品对实时PPP的影响[J]. 武汉大学学报·信息科学版, 2019, 44(12): 1 739-1 748 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201912001.htm

    Yao Yibin, Feng Xinying, Peng Wenjie, et al. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1 739-1 748 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201912001.htm
    [12]
    Li Z, Chen W, Ruan R G, et al. Evaluation of PPP-RTK Based on BDS-3/BDS-2/GPS Observations: A Case Study in Europe[J]. GPS Solutions, 2020, 24(2): 1-12 doi: 10.1007/s10291-019-0948-6
    [13]
    袁菲, 李英冰, 缪格. IGS电离层产品的时空特性研究[J]. 全球定位系统, 2017, 42(1): 44-48 https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201701009.htm

    Yuan Fei, Li Yingbing, Miao Ge. Research on the Spatio-Temporal Characteristics of IGS Ionospheric Products[J]. GNSS World of China, 2017, 42 (1): 44-48 https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW201701009.htm
    [14]
    辜声峰. 多频GNSS非差非组合精密数据处理理论及其应用[D]. 武汉: 武汉大学, 2013

    Gu Shengfeng. Research on the Zero-Difference Un-Combined Data Processing Model for Multi-Frequency GNSS and Its Applications[D]. Wuhan: Wuhan University, 2013
    [15]
    Shi C, Gu S F, Lou Y D, et al. An Improved Approach to Model Ionospheric Delays for Single-Frequency Precise Point Positioning[J]. Advances in Space Research, 2012, 49(12): 1 698-1 708 http://www.onacademic.com/detail/journal_1000035026698210_a0e6.html
    [16]
    Zhao Q L, Wang Y T, Gu S F, et al. Refining Ionospheric Delay Modeling for Undifferenced and Uncombined GNSS Data Processing[J]. Journal of Geodesy, 2019, 93(4): 545-560 doi: 10.1007/s00190-018-1180-9
    [17]
    周仁宇, 胡志刚, 苏牡丹, 等. 北斗全球系统广播电离层模型性能初步评估[J]. 武汉大学学报·信息科学版, 2019, 44(10): 1 457-1 464 doi: 10.13203/j.whugis20170428

    Zhou Renyu, Hu Zhigang, Su Mudan, et al. Preliminary Performance Evaluation of BeiDou Global Ionospheric Delay Correction Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1 457-1 464 doi: 10.13203/j.whugis20170428
    [18]
    胡弦. 多模地基GNSS区域电离层建模及验证分析[D]. 武汉: 武汉大学, 2017

    Hu Xian. Regional Ionospheric Modeling Based on the Data of Ground-Based Multi-GNSS and Validation[D]. Wuhan: Wuhan University, 2017
    [19]
    Shi C, Guo S W, Gu S F, et al. Multi-GNSS Satellite Clock Estimation Constrained with Oscillator Noise Model in the Existence of Data Discontinuity[J]. Journal of Geodesy, 2019, 93(4): 515-528 doi: 10.1007/s00190-018-1178-3
    [20]
    Gu S F, Wang Y T, Zhao Q L, et al. BDS-3 Differential Code Bias Estimation with Undifferenced Uncombined Model Based on Triple-Frequency Observation[J]. Journal of Geodesy, 2020, 94(4): 1-13 doi: 10.1007%2Fs00190-020-01364-w
  • Related Articles

    [1]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [2]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [6]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [7]ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401.
    [10]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 肖斌宸,叶飞,叶险峰,曾翔强. 电离层和地形复杂区域北斗/GNSS实时PPP性能及大气分析. 数据与计算发展前沿(中英文). 2025(01): 108-118 .
    2. 侯诚,史俊波,苟劲松,郭际明,邹进贵. 多路径误差对BDS-3变形监测精度的影响. 大地测量与地球动力学. 2024(02): 128-133 .
    3. 邓陈喜,姜维,王剑,蔡伯根. 基于北斗3号PPP-B2b信号的实时精密单点定位方法研究. 铁道学报. 2024(02): 63-73 .
    4. 于合理,孙晓东,贾赞杰,武智佳,代桃高. 限制环境下的GNSS精密授时方法研究综述. 海洋测绘. 2024(02): 46-50 .
    5. 许扬胤,任夏,明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析. 全球定位系统. 2024(03): 10-19 .
    6. 肖恭伟,卞逸驰,何在民,广伟,尹翔飞,张润芝. 北斗三号PPP-B2b差分码偏差对UPPP解算的影响. 西安邮电大学学报. 2024(02): 1-10 .
    7. 宋伟伟,宋啟晟,何倩倩,龚晓鹏,辜声峰. 高精度电离层产品增强PPP-B2b定位性能分析. 武汉大学学报(信息科学版). 2024(09): 1517-1526 .
    8. 索世恒,韩昆,张永峰. 伽利略高精度服务产品与其全球定位性能评估. 地理空间信息. 2024(11): 100-104+121 .
    9. 孙爽,王敏,刘长建,孟欣,季锐. PPP-B2b服务钟差常数偏差特性及对定位的影响分析. 测绘科学. 2023(01): 8-15 .
    10. 郭文飞,朱萌萌,辜声峰,左鸿铭,陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法. 武汉大学学报(信息科学版). 2023(07): 1126-1133 .
    11. 唐守普,吴文坛,夏振营,史进志,赵婉清,莫雁寒. 北斗三号PPP-B2b独立定位分析与应用. 河北省科学院学报. 2023(03): 61-69 .
    12. 赵淑洁,赵当丽,黄媛媛,纪元法. 基于PPP-B2b改正产品的北斗实时精密星历精度分析. 时间频率学报. 2023(02): 141-149 .
    13. 张润芝,何在民,马红皎,武建锋,广伟,肖恭伟. 北斗三号PPP-B2b信号跟踪环路的极点分布法设计. 时间频率学报. 2023(02): 161-169 .
    14. 姚夏,李志敏,吴如楠,毛飞宇,龚晓鹏. 北斗三号PPP-B2b信号时间同步性能分析. 导航定位学报. 2023(04): 84-89 .
    15. 史俊波,董新莹,欧阳晨皓,彭文杰,姚宜斌. 基于北斗三号PPP服务的快速静态和低动态定位性能分析. 大地测量与地球动力学. 2023(10): 997-1002 .
    16. 韩晓红,孙保琪,张喆,周红源,杨海彦,赵当丽,杨旭海. 基于北斗三号PPP-B2b轨道的实时精密共视时间传递. 导航定位与授时. 2023(04): 103-111 .
    17. 肖鹏,孙付平,张伦东,肖凯,商向永. 北斗三号PPP-B2b服务实时动态定位性能分析. 导航定位学报. 2023(05): 21-28 .
    18. 刘杨,曾安敏,郑翠娥,江鹏,刘焱雄. 广播式远程精密水下导航定位技术. 哈尔滨工程大学学报. 2023(11): 1987-1995 .
    19. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .
    20. 赵泉涌,潘树国,缪巍巍,沈超,高旺,赵庆. PPP-B2b常数偏差实时改正后的多频单历元定位. 测绘科学. 2023(11): 61-68 .
    21. 彭松,刘建坤,张云龙,常丹,孙兆辉. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析. 科学技术与工程. 2022(33): 14898-14906 .
    22. 余德荧,金际航,刘一,边少锋. 基于北斗三号PPP-B2b信号的海上精密定位试验分析. 海洋测绘. 2022(06): 51-55+64 .

    Other cited types(9)

Catalog

    Article views (1774) PDF downloads (271) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return