LIU Suyan, WANG Jingxue, SHEN Zhaoyu, WANG Qiang. Line Matching Algorithm Based on Pair-wise Geometric Features and Individual Line Descriptor Constraints[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 936-949. DOI: 10.13203/j.whugis20210147
Citation: LIU Suyan, WANG Jingxue, SHEN Zhaoyu, WANG Qiang. Line Matching Algorithm Based on Pair-wise Geometric Features and Individual Line Descriptor Constraints[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 936-949. DOI: 10.13203/j.whugis20210147

Line Matching Algorithm Based on Pair-wise Geometric Features and Individual Line Descriptor Constraints

More Information
  • Received Date: March 23, 2022
  • Available Online: June 11, 2023
  • Published Date: June 04, 2023
  •   Objectives  In the field of line matching and checking, the geometric attributes of the individual line are weakly stable, and the non one-to-one matching results are difficult to be checked. To address the problems above, a line matching algorithm based on pair-wise geometric features and individual line descriptor constraints was proposed.
      Methods  For matching process, first, two line segments which satisfied certain geometric constraints in the neighborhood were grouped into a line pair and matched as a whole. Second, the epipolar constraint of the intersection in the line pair was used to determine the matching range. And characteristic angles within line pairs, distance ratio between line segments and the radiation information of the neighborhood of line pairs were used to narrow the range of the matching candidates. Finally, the final matching pairs was obtained by calculating the gray similarity of triangle region. For checking process, initially according to the angle of line with epipolar and the slope of line, the corresponding relation between individual lines was established. Moreover, each corresponding line pair was split into two groups of corresponding individual lines. Then, descriptors were established for two single lines in each group and the similarity between the two line descriptors was calculated. Eventually, collinear geometry and descriptor similarity were combined to check the matching results, eliminate the false matches. Collinear lines in the results were merged and one-to-one matching results were obtained.
      Results  Aerial images with typical texture features and close-range images of different transformation types were selected for experiments. The results demonstrate that the proposed algorithm has a high matching accuracy. The matching accuracy rate is higher than 95% in complex scenes with similar texture, perspective change, rotation change, scale change and illumination change.
      Conclusions  The proposed algorithm has good robustness to different types of images, and also has advantages for complex line matching check.
  • [1]
    Hofer M, Maurer M, Bischof H. Improving Sparse 3D Models for Man-Made Environments Using Line-Based 3D Reconstruction[C]//IEEE 2014 2nd International Conference on 3D Vision, Salt Lake, USA, 2014.
    [2]
    陆胜寒. 基于影像几何约束匹配策略的三维重建方法研究与实现[D]. 北京: 清华大学, 2018.

    Lu Shenghan. Study and Implementation of Image 3-D Reconstruction Based on Feature Matching Strategy by Geometric Constraints[D]. Beijing: Tsinghua University, 2018.
    [3]
    王玮琦, 游雄, 杨剑, 等. 一种改进匹配点对选取策略的Elastic Fusion室内三维重建算法[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1469-1477. doi: 10.13203/j.whugis20180278

    Wang Weiqi, You Xiong, Yang Jian, et al. Elastic Fusion for Indoor 3D Reconstruction with an Improved Matching Points Selection Strategy[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1469-1477. doi: 10.13203/j.whugis20180278
    [4]
    曹林. 基于倾斜影像线特征的建筑物三维模型重建与优化方法研究[D]. 郑州: 信息工程大学, 2020.

    Cao Lin. Research on 3D Building Model Reconstruction and Optimization Method Based on Line Festures of Oblique Images[D]. Zhengzhou: Information Engineering University, 2020.
    [5]
    池雨灿. 基于图像边缘特征的空间目标重建与评估方法[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Chi Yucan. Reconstruction and Evaluation Based on Image Edge Feature for Space Target[D]. Harbin: Harbin Institute of Technology, 2019.
    [6]
    梁艳. 基于近景图像序列的建筑物三维模型重建研究[D]. 南京: 南京师范大学, 2013.

    Liang Yan. Research on 3D Model Reconstruction of Building from Close Range Image Sequence[D]. Nanjing: Nanjing Normal University, 2013.
    [7]
    张焱鑫. 基于直线特征的多视图几何三维重建算法研究与实现[D]. 秦皇岛: 燕山大学, 2019.

    Zhang Yanxin. Research and Implementation of Multi-view Geometric 3D Reconstruction Algorithms Based on Linear Features[D]. Qinhuangdao: Yanshan University, 2019.
    [8]
    Hofer M, Maurer M, Bischof H. Efficient 3D Scene Abstraction Using Line Segments[J]. Computer Vision and Image Understanding, 2017, 157: 167-178. doi: 10.1016/j.cviu.2016.03.017
    [9]
    Schmid C, Zisserman A. Automatic Line Matching Across Views[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, USA, 2002.
    [10]
    梁艳, 盛业华, 张卡, 等. 利用局部仿射不变及核线约束的近景影像直线特征匹配[J]. 武汉大学学报(信息科学版), 2014, 39(2): 229-233. doi: 10.13203/j.whugis20120611

    Liang Yan, Sheng Yehua, Zhang Ka, et al. Linear Feature Matching Method Based on Local Affine Invariant and Epipolar Constraint for Close-range Images[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 229-233. doi: 10.13203/j.whugis20120611
    [11]
    Schmid C, Zisserman A. The Geometry and Matching of Lines and Curves over Multiple Views[J]. International Journal of Computer Vision, 2000, 40(3): 199-233. doi: 10.1023/A:1008135310502
    [12]
    李畅, 刘亚文, 胡敏, 等. 面向街景立面三维重建的近景影像直线匹配方法研究[J]. 武汉大学学报(信息科学版), 2010, 35(12): 1461-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201012019.htm

    Li Chang, Liu Yawen, Hu Min, et al. Study on Street Elevation 3D Reconstruction-oriented Straight Line Matching for Close-range Images[J]. Geomatics and Information Science of Wuhan University, 2010, 35(12): 1461-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201012019.htm
    [13]
    Jia Q, Fan X, Gao X K, et al. Line Matching Based on Line-points Invariant and Local Homography[J]. Pattern Recognition, 2018, 81: 471-483. doi: 10.1016/j.patcog.2018.03.031
    [14]
    张云生, 朱庆, 吴波, 等. 一种基于三角网约束的立体影像线特征多级匹配方法[J]. 武汉大学学报(信息科学版), 2013, 38(5): 522-527. http://ch.whu.edu.cn/article/id/2634

    Zhang Yunsheng, Zhu Qing, Wu Bo, et al. A Hierarchical Stereo Line Matching Method Based on a Triangle Constraint[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 522-527. http://ch.whu.edu.cn/article/id/2634
    [15]
    Wang Z H, Wu F C, Hu Z Y. MSLD: A Robust Descriptor for Line Matching[J]. Pattern Recognition, 2009, 42(5): 941-953. doi: 10.1016/j.patcog.2008.08.035
    [16]
    Xing J, Wei Z Z, Zhang G J. A Line Matching Method Based on Multiple Intensity Ordering with Uniformly Spaced Sampling[J]. Sensors (Basel, Switzerland), 2020, 20(6): 1639. doi: 10.3390/s20061639
    [17]
    Wang L, Neumann U, You S Y. Wide-baseline Image Matching Using Line Signatures[C]//IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2010.
    [18]
    Al-Shahri M, Yilmaz A. Line Matching in Wide-baseline Stereo: A Top-down Approach[J]. IEEE Transactions on Image Processing, 2014, 23(9): 4199-4210.
    [19]
    Li K, Yao J, Lu X, et al. Hierarchical Line Matching Based on Line-junction-line Structure Descriptor and Local Homography Estimation[J]. Neurocomputing, 2016, 184: 207-220. doi: 10.1016/j.neucom.2015.07.137
    [20]
    Li K, Yao J. Line Segment Matching and Reconstruction via Exploiting Coplanar Cues[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 125: 33-49. doi: 10.1016/j.isprsjprs.2017.01.006
    [21]
    Kim H, Lee S. A Novel Line Matching Method Based on Intersection Context[C]//IEEE International Conference on Robotics and Automation, Anchorage, USA, 2010.
    [22]
    Kim H W, Lee S H. Simultaneous Line Matching and Epipolar Geometry Estimation Based on the Intersection Context of Coplanar Line Pairs[J]. Pattern Recognition Letters, 2012, 33(10): 1349-1363. doi: 10.1016/j.patrec.2012.03.014
    [23]
    Li K, Yao J, Lu X H. Robust Line Matching Based on Ray-point-ray Structure Descriptor[M]//Computer Vision: ACCV 2014 Workshops. Cham: Springer, 2015: 554-569.
    [24]
    OK A O, Wegner J D, Heipke C, et al. Matching of Straight Line Segments from Aerial Stereo Images of Urban Areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 74: 133-152. doi: 10.1016/j.isprsjprs.2012.09.003
    [25]
    王竞雪, 宋伟东, 王伟玺. 同名点及高程平面约束的航空影像直线匹配算法[J]. 测绘学报, 2016, 45(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201601014.htm

    Wang Jingxue, Song Weidong, Wang Weixi. Line Matching Algorithm for Aerial Image Based on Corresponding Points and Zplane Constraints[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201601014.htm
    [26]
    王竞雪, 朱庆, 王伟玺. 顾及拓扑关系的立体影像直线特征可靠匹配算法[J]. 测绘学报, 2017, 46(11): 1850-1858. doi: 10.11947/j.AGCS.2017.20170162

    Wang Jingxue, Zhu Qing, Wang Weixi. Reliable Line Matching Algorithm for Stereo Images with Topological Relationship[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11): 1850-1858. doi: 10.11947/j.AGCS.2017.20170162
    [27]
    Tola E, Lepetit V, Fua P. Daisy: An Efficient Dense Descriptor Applied to Wide-baseline Stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830.
  • Related Articles

    [1]GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458
    [2]SUN Leyuan, YANG Jun, GUO Xiye, HUANG Wende. Frequency Performance Evaluation of BeiDou-3 Satellite Atomic Clocks[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200486
    [3]WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058
    [4]AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091
    [5]LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537
    [6]WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806
    [7]LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542
    [8]HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827
    [9]MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186.
    [10]GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221.
  • Cited by

    Periodical cited type(10)

    1. 黄观文,曹钰,谭粤,谢威. GNSS星载原子钟在轨性能评估技术进展. 测绘地理信息. 2024(01): 20-28 .
    2. 蒋春华,朱美珍,薛慧杰,刘广盛. 基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报. 大地测量与地球动力学. 2024(03): 257-262 .
    3. 艾孝军,孙大伟,贾小林,郭栋,彭腾. GNSS星载原子钟性能评估与噪声分析模型算法研究. 无线电工程. 2023(05): 1041-1051 .
    4. 李方能,梁益丰,许江宁,吴苗. BDS/GPS新型铷原子钟长期特性分析. 中国惯性技术学报. 2023(05): 452-461 .
    5. 张润哲,刘雪娇,王全喜. 基于方位导引的无人僚机着舰进近引导技术研究. 现代导航. 2023(06): 416-421 .
    6. 龚明杰. GPS与GLONASS多频组合伪距单点定位精度分析. 测绘与空间地理信息. 2022(02): 115-117+122 .
    7. 樊礼谦,焦文海,蔡洪亮,周巍,徐颖,周舒涵. 北斗三号卫星钟长期稳定性分析. 导航定位学报. 2022(04): 11-19 .
    8. 李特,张为成,王建敏,李秀海. 基于不同评价指标的北斗星载原子钟特性分析. 黑龙江工程学院学报. 2022(04): 1-7 .
    9. 伏军胜,贾小林,刘家龙,许瑾,贺延伟,张奋. BDS-3卫星与其他GNSS系统卫星原子钟性能分析. 真空与低温. 2022(05): 615-622 .
    10. 齐艳丽. 北斗星载原子钟频率稳定度评估. 科技视界. 2022(29): 83-85 .

    Other cited types(11)

Catalog

    Article views (1223) PDF downloads (114) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return