LIU Suyan, WANG Jingxue, SHEN Zhaoyu, WANG Qiang. Line Matching Algorithm Based on Pair-wise Geometric Features and Individual Line Descriptor Constraints[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 936-949. DOI: 10.13203/j.whugis20210147
Citation: LIU Suyan, WANG Jingxue, SHEN Zhaoyu, WANG Qiang. Line Matching Algorithm Based on Pair-wise Geometric Features and Individual Line Descriptor Constraints[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 936-949. DOI: 10.13203/j.whugis20210147

Line Matching Algorithm Based on Pair-wise Geometric Features and Individual Line Descriptor Constraints

More Information
  • Received Date: March 23, 2022
  • Available Online: June 11, 2023
  • Published Date: June 04, 2023
  •   Objectives  In the field of line matching and checking, the geometric attributes of the individual line are weakly stable, and the non one-to-one matching results are difficult to be checked. To address the problems above, a line matching algorithm based on pair-wise geometric features and individual line descriptor constraints was proposed.
      Methods  For matching process, first, two line segments which satisfied certain geometric constraints in the neighborhood were grouped into a line pair and matched as a whole. Second, the epipolar constraint of the intersection in the line pair was used to determine the matching range. And characteristic angles within line pairs, distance ratio between line segments and the radiation information of the neighborhood of line pairs were used to narrow the range of the matching candidates. Finally, the final matching pairs was obtained by calculating the gray similarity of triangle region. For checking process, initially according to the angle of line with epipolar and the slope of line, the corresponding relation between individual lines was established. Moreover, each corresponding line pair was split into two groups of corresponding individual lines. Then, descriptors were established for two single lines in each group and the similarity between the two line descriptors was calculated. Eventually, collinear geometry and descriptor similarity were combined to check the matching results, eliminate the false matches. Collinear lines in the results were merged and one-to-one matching results were obtained.
      Results  Aerial images with typical texture features and close-range images of different transformation types were selected for experiments. The results demonstrate that the proposed algorithm has a high matching accuracy. The matching accuracy rate is higher than 95% in complex scenes with similar texture, perspective change, rotation change, scale change and illumination change.
      Conclusions  The proposed algorithm has good robustness to different types of images, and also has advantages for complex line matching check.
  • [1]
    Hofer M, Maurer M, Bischof H. Improving Sparse 3D Models for Man-Made Environments Using Line-Based 3D Reconstruction[C]//IEEE 2014 2nd International Conference on 3D Vision, Salt Lake, USA, 2014.
    [2]
    陆胜寒. 基于影像几何约束匹配策略的三维重建方法研究与实现[D]. 北京: 清华大学, 2018.

    Lu Shenghan. Study and Implementation of Image 3-D Reconstruction Based on Feature Matching Strategy by Geometric Constraints[D]. Beijing: Tsinghua University, 2018.
    [3]
    王玮琦, 游雄, 杨剑, 等. 一种改进匹配点对选取策略的Elastic Fusion室内三维重建算法[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1469-1477. doi: 10.13203/j.whugis20180278

    Wang Weiqi, You Xiong, Yang Jian, et al. Elastic Fusion for Indoor 3D Reconstruction with an Improved Matching Points Selection Strategy[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1469-1477. doi: 10.13203/j.whugis20180278
    [4]
    曹林. 基于倾斜影像线特征的建筑物三维模型重建与优化方法研究[D]. 郑州: 信息工程大学, 2020.

    Cao Lin. Research on 3D Building Model Reconstruction and Optimization Method Based on Line Festures of Oblique Images[D]. Zhengzhou: Information Engineering University, 2020.
    [5]
    池雨灿. 基于图像边缘特征的空间目标重建与评估方法[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Chi Yucan. Reconstruction and Evaluation Based on Image Edge Feature for Space Target[D]. Harbin: Harbin Institute of Technology, 2019.
    [6]
    梁艳. 基于近景图像序列的建筑物三维模型重建研究[D]. 南京: 南京师范大学, 2013.

    Liang Yan. Research on 3D Model Reconstruction of Building from Close Range Image Sequence[D]. Nanjing: Nanjing Normal University, 2013.
    [7]
    张焱鑫. 基于直线特征的多视图几何三维重建算法研究与实现[D]. 秦皇岛: 燕山大学, 2019.

    Zhang Yanxin. Research and Implementation of Multi-view Geometric 3D Reconstruction Algorithms Based on Linear Features[D]. Qinhuangdao: Yanshan University, 2019.
    [8]
    Hofer M, Maurer M, Bischof H. Efficient 3D Scene Abstraction Using Line Segments[J]. Computer Vision and Image Understanding, 2017, 157: 167-178. doi: 10.1016/j.cviu.2016.03.017
    [9]
    Schmid C, Zisserman A. Automatic Line Matching Across Views[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, USA, 2002.
    [10]
    梁艳, 盛业华, 张卡, 等. 利用局部仿射不变及核线约束的近景影像直线特征匹配[J]. 武汉大学学报(信息科学版), 2014, 39(2): 229-233. doi: 10.13203/j.whugis20120611

    Liang Yan, Sheng Yehua, Zhang Ka, et al. Linear Feature Matching Method Based on Local Affine Invariant and Epipolar Constraint for Close-range Images[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 229-233. doi: 10.13203/j.whugis20120611
    [11]
    Schmid C, Zisserman A. The Geometry and Matching of Lines and Curves over Multiple Views[J]. International Journal of Computer Vision, 2000, 40(3): 199-233. doi: 10.1023/A:1008135310502
    [12]
    李畅, 刘亚文, 胡敏, 等. 面向街景立面三维重建的近景影像直线匹配方法研究[J]. 武汉大学学报(信息科学版), 2010, 35(12): 1461-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201012019.htm

    Li Chang, Liu Yawen, Hu Min, et al. Study on Street Elevation 3D Reconstruction-oriented Straight Line Matching for Close-range Images[J]. Geomatics and Information Science of Wuhan University, 2010, 35(12): 1461-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201012019.htm
    [13]
    Jia Q, Fan X, Gao X K, et al. Line Matching Based on Line-points Invariant and Local Homography[J]. Pattern Recognition, 2018, 81: 471-483. doi: 10.1016/j.patcog.2018.03.031
    [14]
    张云生, 朱庆, 吴波, 等. 一种基于三角网约束的立体影像线特征多级匹配方法[J]. 武汉大学学报(信息科学版), 2013, 38(5): 522-527. http://ch.whu.edu.cn/article/id/2634

    Zhang Yunsheng, Zhu Qing, Wu Bo, et al. A Hierarchical Stereo Line Matching Method Based on a Triangle Constraint[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 522-527. http://ch.whu.edu.cn/article/id/2634
    [15]
    Wang Z H, Wu F C, Hu Z Y. MSLD: A Robust Descriptor for Line Matching[J]. Pattern Recognition, 2009, 42(5): 941-953. doi: 10.1016/j.patcog.2008.08.035
    [16]
    Xing J, Wei Z Z, Zhang G J. A Line Matching Method Based on Multiple Intensity Ordering with Uniformly Spaced Sampling[J]. Sensors (Basel, Switzerland), 2020, 20(6): 1639. doi: 10.3390/s20061639
    [17]
    Wang L, Neumann U, You S Y. Wide-baseline Image Matching Using Line Signatures[C]//IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2010.
    [18]
    Al-Shahri M, Yilmaz A. Line Matching in Wide-baseline Stereo: A Top-down Approach[J]. IEEE Transactions on Image Processing, 2014, 23(9): 4199-4210.
    [19]
    Li K, Yao J, Lu X, et al. Hierarchical Line Matching Based on Line-junction-line Structure Descriptor and Local Homography Estimation[J]. Neurocomputing, 2016, 184: 207-220. doi: 10.1016/j.neucom.2015.07.137
    [20]
    Li K, Yao J. Line Segment Matching and Reconstruction via Exploiting Coplanar Cues[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 125: 33-49. doi: 10.1016/j.isprsjprs.2017.01.006
    [21]
    Kim H, Lee S. A Novel Line Matching Method Based on Intersection Context[C]//IEEE International Conference on Robotics and Automation, Anchorage, USA, 2010.
    [22]
    Kim H W, Lee S H. Simultaneous Line Matching and Epipolar Geometry Estimation Based on the Intersection Context of Coplanar Line Pairs[J]. Pattern Recognition Letters, 2012, 33(10): 1349-1363. doi: 10.1016/j.patrec.2012.03.014
    [23]
    Li K, Yao J, Lu X H. Robust Line Matching Based on Ray-point-ray Structure Descriptor[M]//Computer Vision: ACCV 2014 Workshops. Cham: Springer, 2015: 554-569.
    [24]
    OK A O, Wegner J D, Heipke C, et al. Matching of Straight Line Segments from Aerial Stereo Images of Urban Areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 74: 133-152. doi: 10.1016/j.isprsjprs.2012.09.003
    [25]
    王竞雪, 宋伟东, 王伟玺. 同名点及高程平面约束的航空影像直线匹配算法[J]. 测绘学报, 2016, 45(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201601014.htm

    Wang Jingxue, Song Weidong, Wang Weixi. Line Matching Algorithm for Aerial Image Based on Corresponding Points and Zplane Constraints[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201601014.htm
    [26]
    王竞雪, 朱庆, 王伟玺. 顾及拓扑关系的立体影像直线特征可靠匹配算法[J]. 测绘学报, 2017, 46(11): 1850-1858. doi: 10.11947/j.AGCS.2017.20170162

    Wang Jingxue, Zhu Qing, Wang Weixi. Reliable Line Matching Algorithm for Stereo Images with Topological Relationship[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11): 1850-1858. doi: 10.11947/j.AGCS.2017.20170162
    [27]
    Tola E, Lepetit V, Fua P. Daisy: An Efficient Dense Descriptor Applied to Wide-baseline Stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830.
  • Related Articles

    [1]WANG Jiachen, WANG Jing, LIU Chengbao, YANG Lei, SHANG Jian, ZHANG Zhiqing, CAO Yun. Orbit Motion Compensation Modeling and Simulation Analysis for FY-4 Geostationary Meteorological Satellite[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1879-1890. DOI: 10.13203/j.whugis20220314
    [2]LU Wenqiang, HU Xiuqing, HUANG Yong, GAO Xudong, ZHAO Xinglong. Analysis of FY‑3D Satellite Attitude and Orbit Accuracy and Its Influence on Geolocation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 256-263. DOI: 10.13203/j.whugis20210403
    [3]XU Xiaohua, ZHANG Jiman, LUO Jia, GAO Pan. Retrieval and Validation of FY-3C Radio Occultation Refractivities[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 36-44. DOI: 10.13203/j.whugis20190361
    [4]ZHU Zhouzong, XU Xiaohua, LUO Jia. Inversion and Analysis of Atmospheric Boundary Layer Height Using FY-3C Radio Occultation Refractive Index Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 395-401. DOI: 10.13203/j.whugis20190271
    [5]XU Xiaohua, ZHU Zhouzong, LUO Jia. Quality Analysis of the Neutral Atmospheric Products from FY-3C Radio Occultation Based on IGRA2 Radiosonde Data and COSMIC Radio Occulation Products[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 384-393. DOI: 10.13203/j.whugis20180490
    [6]LI Zonghua, MENG Cheng, ZHOU Haiyan, PAN Chenling. A Method of Updating Geographical Elements Based on 4D Fluent Ontology Construction Project Spatio-Temporal Data Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2310-2316. DOI: 10.13203/j.whugis20180173
    [7]LIU Liangming, YE Yuanxin, FAN Dengke, XU Qi. Study on Geometric Rectification for FY-2 S-VISSR Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 384-388.
    [8]XIANG Daxiang, LIU Liangming, HAN Tao. Estimation of Drought Monitoring Ability of FY-3A MERSI Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 334-338.
    [9]WEN Xiongfei, DONG Xinyi, LIU Liangming. Cloud Index Method for Cloud Detection[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 838-841.
    [10]Liu Fengde, Jia Weiping, Qiu Feng, Liu Xianlin. JX-4A Digital Photogrammetric System[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 269-272,276.
  • Cited by

    Periodical cited type(20)

    1. 常国宾,张书毕,刘志平. 从信息论角度理解间接平差. 武汉大学学报(信息科学版). 2024(02): 313-323 .
    2. 刘茜. 多源卫星遥感数据处理和实景三维建模技术研究及实现. 江西测绘. 2024(01): 1-4 .
    3. 黄庆锋. 智能算法在测绘系统中的应用. 电子技术. 2024(03): 336-337 .
    4. 刘颖. 基于自编码器的高效信息化测绘处理研究. 科技资讯. 2024(19): 54-56 .
    5. 陈军,艾廷华,闫利,刘万增,李志林,朱强,高井祥,谢洪,武昊,张俊. 智能化测绘的混合计算范式与方法研究. 测绘学报. 2024(06): 985-998 .
    6. 张琛,贺彪,郭仁忠,马丁,陈业滨. 倾斜摄影三维模型Unreal Engine 4渲染的数据转换方法. 武汉大学学报(信息科学版). 2023(04): 514-524 .
    7. 邵振峰,程涛,李德仁,吴长枝,郭晟. 空地协同移动智能服务平台研发及典型应用. 武汉大学学报(信息科学版). 2023(05): 749-755 .
    8. 汪驰升,李清泉,涂伟,乐阳,夏吉喆,陆旻,梁世浩,高青,郭仁忠. 学科交叉背景下的误差理论与数据处理课程教学探讨. 测绘通报. 2023(05): 170-174+179 .
    9. 何清. 基于Teigha.NET和MapWinGIS的多源异构测绘数据管理系统设计与实现. 安徽地质. 2023(02): 158-161 .
    10. 杨承午. 中国区域速度场多面函数拟合稀疏建模方法研究. 铁道勘察. 2023(04): 27-34 .
    11. 梁丽芳,田时雨,王燕云,吴文坛. 基于高精度轨迹数据的要素特征点提取研究. 测绘与空间地理信息. 2023(08): 36-39+43 .
    12. 王大力,童晓冲,孟丽,雷毅,郭从洲,张有为. 文本中空间信息的结构化建模与语义定位. 测绘学报. 2023(08): 1398-1410 .
    13. 杨梦诗,廖明生,常玲,Ramon F.Hanssen. 城市场景时序InSAR形变解译:问题分析与研究进展. 武汉大学学报(信息科学版). 2023(10): 1643-1660 .
    14. Jianjun ZHU,Leyang WANG,Jun HU,Bofeng LI,Haiqiang FU,Yibin YAO. Recent Advances in the Geodesy Data Processing. Journal of Geodesy and Geoinformation Science. 2023(03): 33-45 .
    15. 薛冰,赵冰玉,李京忠. 地理学视角下城市复杂性研究综述——基于近20年文献回顾. 地理科学进展. 2022(01): 157-172 .
    16. 汤寓麟,李厚朴,张卫东,边少锋,翟国君,刘敏,张晓平. 侧扫声纳检测沉船目标的轻量化DETR-YOLO法. 系统工程与电子技术. 2022(08): 2427-2436 .
    17. 吴彦格. 基于私有云的铁路工程测绘数据服务研究. 测绘. 2022(02): 67-71 .
    18. 李清泉,汪驰升,熊思婷,张德津,邹勤,涂伟. 从几何计算到特征提取的广义测量数据处理. 武汉大学学报(信息科学版). 2022(11): 1805-1814 .
    19. 张宇,江鹏,郭文飞,张丹,韩震. 一种利用两阶段学习模型的水下阵列定位方法. 武汉大学学报(信息科学版). 2021(12): 1889-1899 .
    20. 王佳,刘锦秀,李晓民,马世斌,彭玺. 深度学习支持下的智能化信息提取技术在青海省自然资源变化监测中的应用. 青海国土经略. 2021(05): 61-67 .

    Other cited types(6)

Catalog

    Article views (1223) PDF downloads (114) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return