WANG Li, XU Hao, SHU Bao, YI Chen, TIAN Yunqing. A Multi-source Heterogeneous Data Fusion Method for Landslide Monitoring with Mutual Information and IPSO-LSTM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1478-1488. DOI: 10.13203/j.whugis20210131
Citation: WANG Li, XU Hao, SHU Bao, YI Chen, TIAN Yunqing. A Multi-source Heterogeneous Data Fusion Method for Landslide Monitoring with Mutual Information and IPSO-LSTM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1478-1488. DOI: 10.13203/j.whugis20210131

A Multi-source Heterogeneous Data Fusion Method for Landslide Monitoring with Mutual Information and IPSO-LSTM Neural Network

Funds: The National Natural Science Foundation of China (41877289, 41731066, 41604001, 42004024); the National Key Research and Development Program of China(2018YFC1504805, 2018YFC1505102); China Postdoctoral Science Foundation(2020M673321)
More Information
  • Author Bio:

    WANG Li,PhD,professor, specializes in satellite navigation data processing and geological disaster deformation monitoring theory and method. E-mail: wangli@chd.edu.cn

  • Corresponding author:

    SHU Bao,PhD,lecturer. E-mail: baos613@163.com

  • Received Date: June 29, 2021
  • Published Date: October 04, 2021
  •   Objectives  Based on the interaction characteristics of various environmental factors affecting landslide deformation, a new method for multi-source heterogeneous monitoring data fusion is proposed to improve the accuracy of landslide deformation prediction.
      Methods  First, environmental factors are selected based on mutual information method.Then, the selected environmental factors are taken as the input varia-bles of long short-term memory(LSTM) model, and the accumulated displacement data of landslide are taken as the expected output data, and the parameters of the model are optimized through improved particle swarm optimization method, so as to further improve the prediction accuracy of the fusion model.The global navigation satellite system(GNSS) data of Fa'er landslide in Shuicheng County, Liupanshui City, Guizhou Province are analyzed.
      Results  Experimental results show that the improved particle swarm optimization(IPSO)-LSTM neural network data fusion algorithm, based on mutual information is suitable for landslide deformation prediction with multi-source heterogeneous monitoring data.The environmental factor variable selection method based on mutual information is better than Pearson correlation coefficient selection method. After optimizing the parameters of the improved particle swarm optimization algorithm, the prediction accuracy of the fusion model is higher.
      Conclusions  The proposed fusion prediction model has high prediction accuracy in landslide cumulative displacement prediction, which has important reference value for improving the reliability of landslide monitoring and early warning. It should be noted that only a few typical environmental factors are collected. In practical application, other factors such as groundwater level, soil moisture and human activities can be considered to further improve the prediction accuracy and reliability of the fusion model.
  • [1]
    王利, 张勤, 李寻昌, 等. GPS RTK技术用于滑坡动态实时变形监测的研究[J]. 工程地质学报, 2011, 19(2): 193-198

    Wang Li, Zhang Qin, Li Xunchang, et al. Application of GPS RTK Technology in Landslide Dynamic Real-Time Deformation Monitoring[J]. Journal of Engineering Geology, 2011, 19(2): 193-198
    [2]
    王利, 张勤, 黄观文, 等. GPS PPP技术用于滑坡监测的实验与结果分析[J]. 岩土力学, 2014, 35(7): 2 118-2 124

    Wang Li, Zhang Qin, Huang Guanwen, et al. Test and Result Analysis of Landslide Monitoring Using GPS PPP Technology[J]. Rock and Soil Mechanics, 2014, 35(7): 2 118-2 124
    [3]
    韩军强. 高精度GNSS实时滑坡变形监测技术及环境建模分析研究[J]. 测绘学报, 2020, 49 (3): 397

    Han Junqiang. Research on High Precision GNSS Real Time Landslide Deformation Monitoring Technology and Environmental Modeling[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 397
    [4]
    Shi Xuguo, Liao Mingsheng. Landslide Displacement Monitoring with Split-Bandwidth Interferometry: A Case Study of the Shuping Landslide in the Three Gorges Area[J]. Remote Sensing, 2017, 9: 937 doi: 10.3390/rs9090937
    [5]
    Woods A, Macciotta R, Hendry M T, et al. Updated Understanding of the Deformation Characteristics of the Checkerboard Creek Rock Slope Through GB-InSAR Monitoring[J]. Engineering Geology, 2020, 281(1): 105974
    [6]
    欧阳祖熙, 张宗润, 丁凯, 等. 基于3S技术和地面变形观测的三峡库区典型地段滑坡监测系统[J]. 岩石力学与工程学报, 2005, 24(18): 3 203-3 210

    Ouyang Zuxi, Zhang Zongrun, Ding Kai, et al. Slope Monitoring System of Three Gorges Area Based on 3S Techniques and Ground Deformation Observation[J]. Journal of Rock Mechanics and Engineering, 2005, 24(18): 3 203-3 210
    [7]
    陈明金, 欧阳祖熙, 范国胜. 基于数据融合的滑坡综合监测信息提取方法[J]. 大地测量与地球动力学, 2007, 27(6): 77-81

    Chen Mingjin, Ouyang Zuxi, Fan Guosheng. Extraction Method of Landslide Comprehensive Monitoring Information Based on Data Fusion[J]. Journal of Geodesy and Geodynamics, 2007, 27(6): 77-81
    [8]
    孙波. 多传感器融合估计算法的研究及在滑坡中的应用[D]. 武汉: 中国地质大学, 2012

    Sun Bo. Research on Multi-sensor Fusion Estimation Algorithm and Its Application in Landslide[D]. Wuhan: China University of Geosciences, 2012
    [9]
    王静. 基于QuantyView和多源数据的滑坡体三维地质建模技术研究[D]. 武汉: 中国地质大学, 2013

    Wang Jing. Research on 3D Geological Modeling Technology of Landslide Based on Quanty View and Multi-source Data[D]. Wuhan: China University of Geosciences, 2013
    [10]
    于宪煜. 基于多源数据和多尺度分析的滑坡易发性评价方法研究[D]. 武汉: 中国地质大学, 2016

    Yu Xianyu. Landslide Susceptibility Evaluation Method Based on Multi-source Data and Multi-scale Analysis[D]. Wuhan: China University of Geosciences, 2016
    [11]
    邱丹丹. 基于多源数据融合的滑坡风险分析研究[D]. 武汉: 中国地质大学, 2017

    Qiu Dandan. Landslide Risk Analysis Based on Multi-source data Fusion[D]. Wuhan: China University of Geosciences, 2017
    [12]
    Villalpando F, Tuxpan J, Ramos-Leal J A, et al. New Framework Based on Fusion Information from Multiple Landslide Data Sources and 3D Visualization[J]. Journal of Earth Science, 2020, 31(1): 159-168
    [13]
    张宁. 基于多源遥感数据的滑坡风险度评价研究[D]. 长沙: 中南大学, 2009

    Zhang Ning. Landslide Risk Assessment Based on Multi-source Remote Sensing Data[D]. Changsha: Central South University, 2009
    [14]
    Zhang Yaohui, Wang Li, Shu Bao, et al. Applica-tion of an Adaptive Weighted Estimation Fusion Algorithm in Landslide Deformation Monitoring Data Processing[C]//IOP Conference Series: Earth and Environmental Science, Beijing, China, 2020
    [15]
    王来阳. 面向多源异步传感器滑坡监测数据融合及稳定性分析[D]. 北京: 北京建筑大学, 2019

    Wang Laiyang. Landslide Monitoring Data Fusion and Stability Analysis for Multi-source Asynchronous Sensors [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019
    [16]
    解明礼, 赵建军, 巨能攀, 等. 多源数据滑坡时空演化规律研究: 以黄泥坝子滑坡为例[J]. 武汉大学学报·信息科学版, 2020, 45(6): 923-932 doi: 10.13203/j.whugis20190060

    Xie Mingli, Zhao Jianjun, Ju Nengpan, et al. Research on Temporal and Spatial Evolution of Landslide Based on Multisource Data: A Case Study of Huangnibazi Landslide[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 923-932 doi: 10.13203/j.whugis20190060
    [17]
    霍冬冬, 亓星. 多源数据融合在岩质滑坡监测预警中的应用[J]. 四川理工学院学报(自然科学版), 2019, 32(5): 63-68

    Huo Dongdong, Qi Xing. Application of Multi-source Data Fusion in Rock Landslide Monitoring and Early Warning[J]. Journal of Sichuan University of Science and Technology(Natural Science Edition), 2019, 32(5): 63-68
    [18]
    郭科, 彭继兵, 许强. 应用多传感器目标跟踪融合技术实现滑坡多点监测数据综合信息的提取[J]. 地球物理学进展, 2005, 20(3): 808-813

    Guo Ke, Peng Jibing, Xu Qiang. Realization of the Extraction of Comprehensive Information of Multi-station Monitoring Data of Landslide with the Technique of Multisensor Target Tracking [J]. Progress in Geophysics, 2005, 20(3): 808-813
    [19]
    郭科, 彭继兵, 许强, 等. 滑坡多点数据融合中的多传感器目标跟踪技术应用[J]. 岩土力学, 2006, 27(3): 479-481

    Guo Ke, Peng Jibing, Xu Qiang, et al. Application of Multi-sensor Target Tracking to Multi-station Monitoring Data Fusion in Landslide[J]. Rock and Soil Mechanics, 2006, 27(3): 479-481
    [20]
    刘超云, 尹小波, 张彬. 基于Kalman滤波数据融合技术的滑坡变形分析与预测[J]. 中国地质灾害与防治学报, 2015, 26(4): 30-35

    Liu Chaoyun, Yin Xiaobo, Zhang Bin. Landslide Deformation Analysis and Prediction Based on Kalman Filtering Data Fusion Technology[J]. Chinese Journal of Geological Hazards and Prevention, 2015, 26(4): 30-35
    [21]
    樊俊青. 面向滑坡监测的多源异构传感器信息融合方法研究[D]. 北京: 中国地质大学, 2015

    Fan Junqing. Research on Multi-source Heteroge-neous Sensor Information Fusion Method for Land-slide Monitoring [D]. Beijing: China University of Geosciences, 2015
    [22]
    陆付民, 王尚庆, 李劲, 等. 顾及地下水位因子的卡尔曼滤波模型在滑坡变形预测中的应用[J]. 武汉大学学报·信息科学版, 2010, 35(10): 1 184-1 187 http://ch.whu.edu.cn/article/id/1084

    Lu Fumin, Wang Shangqing, Li Jin, et al. Application of Kalman Filter Model Considering Groundwater Level Factors to Landslide Deformation Forecast [J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1 184-1 187 http://ch.whu.edu.cn/article/id/1084
    [23]
    段功豪, 牛瑞卿, 赵艳南, 等. 基于动态指数平滑模型的降雨诱发型滑坡预测[J]. 武汉大学学报·信息科学版, 2016, 41(7): 958-962 doi: 10.13203/j.whugis20140276

    Duan Gonghao, Niu Ruiqing, Zhao Yannan, et al. Rainfall-Induced Landslide Prediction Based on Dynamic Exponential Smoothing Model[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 958-962 doi: 10.13203/j.whugis20140276
    [24]
    段功豪, 牛瑞卿, 彭令, 等. 诱发因素影响下的滑坡参数优化预测模型研究[J]. 武汉大学学报·信息科学版, 2017, 42(4): 531-536 doi: 10.13203/j.whugis20140913

    Duan Gonghao, Niu Ruiqing, Peng Ling, et al. A Landslide Displacement Prediction Research Based on Optimization Parameter ARIMA Model Under the Inducing Factors[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 531-536 doi: 10.13203/j.whugis20140913
    [25]
    王智伟, 王利, 黄观文, 等. 基于BP神经网络的滑坡监测多源异构数据融合算法研究[J]. 地质力学学报, 2020, 26(4): 575-582

    Wang Zhiwei, Wang Li, Huang Guanwen, et al. Research on Multi-source Heterogeneous Data Fusion Algorithm of Landslide Monitoring Based on BP Neural Network[J]. Journal of Geomechanics, 2020, 26(4): 575-582
    [26]
    Afyouni S, Smith S M, Nichols T E. Effective Degrees of Freedom of the Pearson s Correlation Coefficient Under Autocorrelation[J]. Elsevier Sponsored Documents, 2019, 199: 609-625
    [27]
    Peng H, Long F, Ding C. Feature Selection Based on Mutual Information Criteria of Max-dependency, Max-relevance, and Min-redundancy [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1 226-1 238
    [28]
    戴邵武, 陈强强, 刘志豪, 等. 基于EMD-LSTM的时间序列预测方法[J]. 深圳大学学报(理工版), 2020, 37(3): 265-270

    Dai Shaowu, Chen Qiangqiang, Liu Zhihao, et al. Time Series Prediction Based on EMD-LSTM Model[J]. Journal of Shenzhen University(Science and Engineering Edition), 2020, 37(3): 265-270
    [29]
    彭令, 牛瑞卿, 赵艳南, 等. 基于核主成分分析和粒子群优化支持向量机的滑坡位移预测[J]. 武汉大学学报·信息科学版, 2013, 38(2): 148-152 http://ch.whu.edu.cn/article/id/6093

    Peng Ling, Niu Ruiqing, Zhao Yannan, et al. Prediction of Landslide Displacement Based on KPCA and PSO-SVR[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 148-152 http://ch.whu.edu.cn/article/id/6093
    [30]
    李万, 冯芬玲, 蒋琦玮. 改进粒子群算法优化LSTM神经网络的铁路客运量预测[J]. 铁道科学与工程学报, 2018, 15(12): 3 274-3 280

    Li Wan, Feng Fenling, Jiang Qiwei. Railway Passenger Volume Prediction Based on Improved Particle Swarm Optimization and LSTM Neural Network [J]. Journal of Railway Science and Engineering, 2018, 15(12): 3 274-3 280
    [31]
    李海军, 董建辉, 朱要强, 等. 贵州发耳煤矿尖山营滑坡特征及成因机制[J]. 科学技术与工程, 2019, 19(26): 345-351

    Li Haijun, Dong Jianhui, Zhu Yaoqiang, et al. Characteristics and Genesis Mechanism of Jianshanying Landslide in Faer Coal Mine, Guizhou Province [J]. Science Technology and Engineering, 2019, 19(26): 345-351
    [32]
    陈立权, 赵超英, 任超锋, 等. 光学遥感用于贵州发耳镇尖山营滑坡监测研究[J]. 中国岩溶, 2020, 39(4): 518-523

    Chen Liquan, Zhao Chaoying, Ren Chaofeng, et al. Monitoring the Jianshanying Landslide in a Karst Mountainous Area of Guizhou by Optical Remote Sensing [J]. Carsologica Sinica, 2020, 39 (4): 518-523
  • Related Articles

    [1]HU Cancheng, WANG Changcheng, SHEN Peng. A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1943-1950. DOI: 10.13203/j.whugis20200281
    [2]CHANG Yonglei, YANG Jie, LI Pingxiang, ZHAO Lingli, YU Jie. Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 762-767. DOI: 10.13203/j.whugis20140828
    [3]LI Lan, CHEN Erxue, LI Zengyuan, FENG Qi, ZHAO Lei. K-Wishart Classifier for PolSAR Data and Its Performance Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1498-1504. DOI: 10.13203/j.whugis20140649
    [4]CHEN Jianhong, ZHAO Yongjun, LAI Tao, LIU Wei, HUANG Jie. Fast Non-local Means Filtering of SLC Fully PolSAR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 629-634. DOI: 10.13203/j.whugis20140089
    [5]XIA Guisong, XUE Nan, WANG Zifeng, ZHANG Liangpei. Anisotropic Diffusion on Complex Tensor Fields for PolSAR Image Filtering[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1533-1538,1556. DOI: 10.13203/j.whugis20140630
    [6]HUANG Xiaodong, LIU Xiuguo, CHEN Qihao, CHEN Qi. An Integrated Multi\|characteristics Buildings Segmentation Model of PolSAR Images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 450-454.
    [7]YU Jie, LIU Limin, LI Xiaojuan, ZHAO Zheng. Applications of ICA for Filtering of Fully Polarimetric SAR Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 212-216.
    [8]YANG Jie, ZHAO Lingli, LI Pingxiang, LANG Fengkai. Preserving Polarimetric Scattering Characteristics Classification by Introducing Normalized Circular-pol Correlation Coefficient[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 911-914.
    [9]DENG Shaoping, LI Pingxiang, ZHANG Jixian, HUANG Guoman. Filtering of Polarimetric SAR Imagery Based on Multiplicative Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1168-1171.
    [10]YANG Jie, LANG Fengkai, LI Deren. An Unsupervised Wishart Classification for Fully Polarimetric SAR Image Based on Cloude-Pottier Decomposition and Polarimetric Whitening Filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 104-107.

Catalog

    Article views (1442) PDF downloads (177) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return