CHANG Yonglei, YANG Jie, LI Pingxiang, ZHAO Lingli, YU Jie. Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 762-767. DOI: 10.13203/j.whugis20140828
Citation: CHANG Yonglei, YANG Jie, LI Pingxiang, ZHAO Lingli, YU Jie. Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 762-767. DOI: 10.13203/j.whugis20140828

Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector

Funds: 

The Commonweal Surveying Project 201412002

the National Natural Science Foundation of China 91438203

the National Natural Science Foundation of China 61371199

the Project of Yantai Oil Spill Response Technical Center of China MSA 

the Project of Beijing Key Laboratory of Urban Spatial Information Engineering 2014204

the Project of National Administration of Surveying, Mapping and Geo-Information through the Key Laboratory of Geo-Informatics 201406

More Information
  • Author Bio:

    CHANG Yonglei, PhD candidate, specializes in PolSAR image processing. E-mail: chang_yonglei@163.com

  • Corresponding author:

    YANG Jie, PhD, professor., E-mail: yangj@whu.edu.cn

  • Received Date: October 08, 2015
  • Published Date: June 04, 2017
  • The automatic recognition of bridges has both civil and military significance. However, in complicated cases when the image resolution is at the decimeter scale. the bridge scenes are messy and the targets small, and automatic recognition will become quite complicated. Thus, we proposed a novel algorithm based on the analysis of the statistical distribution and features of bridge targets in high-resolution SAR images. A CFAR detector locates potential bridge targets based on the Weibull distribution. Scene areas of bridges are extracted and false alarms are removed by utilizing the features of bridges with the help of Hough transformation. Domestic airborne polarimetric SAR data and AIRSAR data illustrate the effectiveness of this method. Results indicate that this algorithm recognizes bridges in complicated cases with high adaptability.
  • [1]
    杨文, 陈嘉宇, 孙洪, 等.基于SAR图像的点状目标检测方法研究[J].电波科学学报, 2004, 19(3): 362-366 http://www.cnki.com.cn/Article/CJFDTOTAL-DBKX200403022.htm

    Yang Wen, Chen Jiayu, Sun Hong, et al. Study on Point Targets Detection in SAR Images[J]. Chinese Journal of Radio Science, 2004, 19(3): 362-366 http://www.cnki.com.cn/Article/CJFDTOTAL-DBKX200403022.htm
    [2]
    Peng Z, Liu S, Tian G, et al. Bridge Detection and Recognition in Remote Sensing SAR Images Using Pulse Coupled Neural Networks[M]//Advances in Neural Network Research and Applications. Berlin, Germany: Springer, 2010
    [3]
    Zhang X, Song J, Yi Z, et al. Extraction and Recognition of Bridges over Water in High Resolution SAR Image[M]//Advances in Multimedia, Software Engineering and Computing. Berlin, Germany: Springer, 2011
    [4]
    Yin D, Zhang R. Research on the Recognition Method of Bridge Target in SAR Image[C]. IEEE International Conference on Computer and Information Technology, Bradford, UK, 2010
    [5]
    戴光照, 张荣.高分辨率SAR图像中的桥梁识别方法研究[J].遥感学报, 2007, 11(2): 177-184 doi: 10.11834/jrs.20070224

    Dai Guangzhao, Zhang Rong. A Study of Bridge Recognition in High Resolution SAR Images[J]. Journal of Remote Sensing, 2007, 11(2): 177-184 doi: 10.11834/jrs.20070224
    [6]
    Zheng N, Zheng W, Xu Z L, et al. Bridge Target Detection in SAR Images Based on Texture Feature[J]. Applied Mechanics and Materials, 2013, 347(1): 3 634-3 638 https://www.scientific.net/AMM.347-350.3634
    [7]
    董银文, 苑秉成, 石钊铭.基于区域特征的航拍图像水上桥梁自动识别[J].武汉大学学报·信息科学版, 2013, 38(9): 1 073-1 077 http://ch.whu.edu.cn/CN/abstract/abstract2748.shtml

    Dong Yinwen, Yuan Bingcheng, Shi Zhaoming. Automatic Recognition of Bridge Above Water in Aerial Images Based on Regional Feature[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1 073-1 077 http://ch.whu.edu.cn/CN/abstract/abstract2748.shtml
    [8]
    李云帆, 马洪超, 邬建伟, 等.顾及地形特征的机载LiDAR数据桥梁提取算法研究[J].武汉大学学报·信息科学版, 2011, 36(5): 552-555 http://ch.whu.edu.cn/CN/abstract/abstract535.shtml

    Li Yunfan, Ma Hongchao, Wu Jianwei, et al. Extracting Bridges from Airborne LiDAR Data Based on Terrain Features[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 552-555 http://ch.whu.edu.cn/CN/abstract/abstract535.shtml
    [9]
    Di Bisceglie M, Galdi C. CFAR Detection of Extended Objects in High Resolution SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 833-843 doi: 10.1109/TGRS.2004.843190
    [10]
    Jung C H, Song W Y, Rho S H, et al. Double-Step Fast CFAR Scheme for Multiple Target Detection in High Resolution SAR Images[C]. IEEE National Radar Conference, Washington D C, USA, 2010
    [11]
    Cohen A C. Maximum Likelihood Estimation in the Weibull Distribution Based on Complete and Censored Samples[J]. Technometrics, 1965, 7(4): 579-588 doi: 10.1080/00401706.1965.10490300
    [12]
    Shi L. The Low Backscattering Targets Classification in Urban Areas[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012(1-7): 171-176 https://www.researchgate.net/publication/274676969_THE_LOW_BACKSCATTERING_TARGETS_CLASSIFICATION_IN_URBAN_AREAS
    [13]
    Cloude S R, Pottier E. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78 doi: 10.1109/36.551935
    [14]
    Marino A, Cloude S R, Woodhouse I H. Detecting Depolarized Targets Using a New Geometrical Perturbation Filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3 787-3 799 doi: 10.1109/TGRS.2012.2185703
    [15]
    Ballard D H. Generalizing the Hough Transform to Detect Arbitrary Shapes[J]. Pattern Recognition, 1981, 13(2): 111-122 doi: 10.1016/0031-3203(81)90009-1
  • Related Articles

    [1]ZHU Tingting, LI Fei, ZHANG Shengkai, YUAN Lexian. Rock Outcrop Detection from RADARSAT-1 Datasets Based on Constant False Alarm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1512-1517. DOI: 10.13203/j.whugis20150266
    [2]an wen, mengxian gwei. animp rovedclutterma pdetectionmethod[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1176-1179. DOI: 10.13203/j .whu g is20140449
    [3]Wang Feng, You Hongjian, Fu Xingyu. Auto-Adaptive Well-Distributed Scale-Invariant Feature for SAR Images Registration[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 159-163.
    [4]he chu, zhangyu, liaoziqian, xuxin. compressive sensing based cfar target detection algorithm for sar image[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 878-882.
    [5]YOU Hongjian, FU Kun. SAR Change Detection Based on Cluster Distribution Divergence[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 454-456.
    [6]MAO Haifeng. Distributed GIS for Agriculture Based on J2EE[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 140-143.
    [7]ZHOU Shijian, GUAN yunlan, LU Tieding, ZANG Deyan. The Analytical Collocation of the Error Distribution[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 455-458.
    [8]Sun Haiyan, Yu Zongchou. The Digital Characters of the p-norm sample Distribution[J]. Geomatics and Information Science of Wuhan University, 1998, 23(3): 244-247.
    [9]Sun Haiyan, Yu Zongchou. The Sample Distributions of p-norm Population[J]. Geomatics and Information Science of Wuhan University, 1998, 23(2): 118-120.
    [10]Hu Zhendong, Da Hanqiao, Xia Linyuan. Distributed Computing Environment and Distributed Processing of Computer Network[J]. Geomatics and Information Science of Wuhan University, 1997, 22(3): 270-272.
  • Cited by

    Periodical cited type(2)

    1. 肖和平,赵宇恒,米素娟. 基于深度学习CaffeNet模型的综合交通设施场景分类与识别研究. 湖南交通科技. 2021(01): 140-145 .
    2. 杨杰,常永雷,李平湘,赵伶俐,史磊. 采用螺旋散射的SAR极化定标参考地物提取方法. 武汉大学学报(信息科学版). 2018(12): 2023-2029 .

    Other cited types(5)

Catalog

    Article views (1508) PDF downloads (354) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return