HU Cancheng, WANG Changcheng, SHEN Peng. A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1943-1950. DOI: 10.13203/j.whugis20200281
Citation: HU Cancheng, WANG Changcheng, SHEN Peng. A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1943-1950. DOI: 10.13203/j.whugis20200281

A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test

More Information
  • Received Date: October 24, 2020
  • Available Online: October 17, 2021
  • Objectives 

    Compared with the traditional single-polarization synthetic aperture radar(SAR), the full-polarization SAR can obtain more abundant polarimetric scattering information and describe the geometric and physical characteristics of the target more comprehensively.

    Methods 

    To make full use of the polarimetric scattering information of ground objects, we utilize the polarimetric coherence matrix used to describe distributed targets and the polarimetric likelihood ratio test (PolLRT) based on complex Wishart distribution to accurately evaluate the temporal similarity between master and slave image blocks.

    Results 

    Compared with the traditional method, this method not only considers the cross-correlation information between the same polarization, but also considers the cross-correlation information between different polarization modes, to improve the matching performance of the time series polarization information. In the real experiment, two fully polarized unmanned aerial vehicle(UAV) SAR data are used as experimental data, and the external global positioning system (GPS) deformation data is used as the reference data.

    Conclusions 

    The experimental results show that the proposed algorithm has higher deformation extraction accuracy and shows more robust deformation extraction performance under different matching window sizes.

  • [1]
    van Westen C J, van Asch T W J, Soeters R. Landslide Hazard and Risk Zonation: Why Is It Still so Difficult?[J]. Bulletin of Engineering Geology and the Environment, 2006, 65(2): 167-184. doi: 10.1007/s10064-005-0023-0
    [2]
    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    Huang Runqiu. Large-Scale Landslides and Their Sliding Mechanisms in China Since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
    [3]
    戴可人, 卓冠晨, 许强, 等. 雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1778-1786. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201912006.htm

    Dai Keren, Zhuo Guanchen, Xu Qiang, et al. Tracing the Pre-failure Two-Dimensional Surface Displacements of Nanyu Landslide, Gansu Province with Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1778-1786. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201912006.htm
    [4]
    史绪国, 张路, 许强, 等. 黄土台塬滑坡变形的时序InSAR监测分析[J]. 武汉大学学报(信息科学版), 2019, 44(7): 1027-1034.

    Shi Xuguo, Zhang Lu, Xu Qiang, et al. Monitoring Slope Displacements of Loess Terrace Using Time Series InSAR Analysis Technique[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1027-1034.
    [5]
    Harant O, Bombrun L, Vasile G, et al. Displacement Estimation by Maximum-Likelihood Texture Tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 398-407. doi: 10.1109/JSTSP.2010.2100365
    [6]
    Gabriel A K, Goldstein R M, Zebker H A. Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry[J]. Journal of Geophysical Research, 1989, 94(B7): 9183. doi: 10.1029/JB094iB07p09183
    [7]
    Michel R, Avouac J P, Taboury J. Measuring Ground Displacements from SAR Amplitude Images: Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(7): 875-878. doi: 10.1029/1999GL900138
    [8]
    Michel R, Avouac J P, Taboury J. Measuring near Field Coseismic Displacements from SAR Images: Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(19): 3017-3020. doi: 10.1029/1999GL900524
    [9]
    Zhang L, Liao M S, Balz T, et al. Monitoring Landslide Activities in the Three Gorges Area with Multi-frequency Satellite SAR Data Sets[M]//Scaioni M. Modern Technologies for Landslide Monitoring and Prediction. Berlin, Heidelberg: Springer, 2015.
    [10]
    李佳, 李志伟, 汪长城, 等. SAR偏移量跟踪技术估计天山南依内里切克冰川运动[J]. 地球物理学报, 2013, 56(4): 1226-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304019.htm

    Li Jia, Li Zhiwei, Wang Changcheng, et al. Using SAR Offset-Tracking Approach to Estimate Surface Motion of the South Inylchek Glacier in Tianshan[J]. Chinese Journal of Geophysics, 2013, 56(4): 1226-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304019.htm
    [11]
    Hu J, Li Z W, Ding X L, et al. Two-Dimensional Co-seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching[J]. Sensors, 2008, 8(10): 6484-6495. doi: 10.3390/s8106484
    [12]
    Cai J H, Wang C C, Mao X K, et al. An Adaptive Offset Tracking Method with SAR Images for Landslide Displacement Monitoring[J]. Remote Sensing, 2017, 9: 830. doi: 10.3390/rs9080830
    [13]
    Wang C C, Shen P, Li X F, et al. A Novel Vessel Velocity Estimation Method Using Dual-Platform TerraSAR-X and TanDEM-X Full Polarimetric SAR Data in Pursuit Monostatic Mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6130-6144. doi: 10.1109/TGRS.2019.2904465
    [14]
    Lee J S, Hoppel K W, Mango S A, et al. Intensity and Phase Statistics of Multilook Polarimetric and Interferometric SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1017-1028. doi: 10.1109/36.312890
    [15]
    Korosov A, Rampal P. A Combination of Feature Tracking and Pattern Matching with Optimal Parametrization for Sea Ice Drift Retrieval from SAR Data[J]. Remote Sensing, 2017, 9(3): 258. doi: 10.3390/rs9030258
    [16]
    Tong X H, Ye Z, Xu Y S, et al. A Novel Subpixel Phase Correlation Method Using Singular Value Decomposition and Unified Random Sample Consensus[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4143-4156. doi: 10.1109/TGRS.2015.2391999
    [17]
    Erten E, Reigber A, Hellwich O, et al. Glacier Velocity Monitoring by Maximum Likelihood Texture Tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 394-405. doi: 10.1109/TGRS.2008.2009932
    [18]
    Wang C C, Mao X K, Wang Q J. Landslide Displacement Monitoring by a Fully Polarimetric SAR Offset Tracking Method[J]. Remote Sensing, 2016, 8(8): 624. doi: 10.3390/rs8080624
    [19]
    Woodhouse I H. Polarimetric Radar Imaging: From Basics to Applications by Jong-Sen Lee and EricPottier[J]. International Journal of Remote Sensing, 2012, 33(1): 333-334. doi: 10.1080/01431161.2010.519925
    [20]
    Shen P, Wang C C, Gao H, et al. An Adaptive Nonlocal Mean Filter for PolSAR Data with Shape-Adaptive Patches Matching[J]. Sensors, 2018, 18(7): 2215. doi: 10.3390/s18072215
    [21]
    Deledalle C A, Denis L, Tupin F, et al. NL-SAR: A Unified Nonlocal Framework for Resolution-Preserving(Pol)(in)SAR Denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2021-2038. doi: 10.1109/TGRS.2014.2352555
    [22]
    Goodman N R. Statistical Analysis Based on a Certain Multivariate Complex Gaussian Distribution (an Introduction)[J]. The Annals of Mathematical Statistics, 1963, 34(1): 152-177. doi: 10.1214/aoms/1177704250
    [23]
    Conradsen K, Nielsen A A, Schou J, et al. A Test Statistic in the Complex Wishart Distribution and Its Application to Change Detection in Polarimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 4-19. doi: 10.1109/TGRS.2002.808066
    [24]
    Chen J, Chen Y L, An W T, et al. Nonlocal Filtering for Polarimetric SAR Data: A Pretest Approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1744-1754. doi: 10.1109/TGRS.2010.2087763
    [25]
    Crandell D R. Movement of the Slumgullion Earthflow Near Lake City, Colorado [J]. Geologic and Hydrologic Sciences, 1961(1): B136–B139.
    [26]
    Milillo P, Fielding E J, Shulz W H, et al. COSMO-SkyMed Spotlight Interferometry over Rural Areas: The Slumgullion Landslide in Colorado, USA[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 2919-2926. doi: 10.1109/JSTARS.2014.2345664
  • Cited by

    Periodical cited type(37)

    1. 罗斌,刘文豪,吴进,韩嘉福,吴文周,李洪省. 从地理信息系统到地理智能体. 地球信息科学学报. 2025(01): 83-99 .
    2. 王培晓,张恒才,张岩,程诗奋,张彤,陆锋. 地理空间智能预测研究进展与发展趋势. 地球信息科学学报. 2025(01): 60-82 .
    3. 王行风,陈国良. 地理知识图谱辅助的煤矿区生态损伤智慧识别研究. 地球信息科学学报. 2025(02): 367-380 .
    4. 张岸,朱俊锴. 新一代人工智能驱动下地图学研究的机遇与挑战. 地球信息科学学报. 2024(01): 35-45 .
    5. 刘康. 人类移动数据生成方法:研究进展与趋势探讨. 地球信息科学学报. 2024(04): 831-847 .
    6. 闾国年,袁林旺,陈旻,张雪英,周良辰,俞肇元,罗文,乐松山,吴明光. 地理信息学科发展的思考. 地球信息科学学报. 2024(04): 767-778 .
    7. 吴田军,骆剑承,李曼嘉,张静,赵馨,胡晓东,左进,闵帆,王玲玉,黄启厅. 地理时空数字化底座理论框架构建与应用实践. 地球信息科学学报. 2024(04): 799-830 .
    8. 王宇君,郭健,徐立,李宗明,李可欣. 利用深度森林进行船舶类型分类识别. 测绘科学技术学报. 2024(04): 425-432+440 .
    9. 邬伦,侯远樵,刘瑜. 大数据的6种地理学应用范式. 测绘学报. 2024(08): 1465-1479 .
    10. 石岩,王达,邓敏,杨学习. 时空异常探测:从数据驱动到知识驱动的内涵转变与实现路径. 测绘学报. 2024(08): 1493-1504 .
    11. 杨开先,甄峰. 地理学视角下城市空间智能化研究进展与思考. 地理科学. 2024(07): 1166-1177 .
    12. 李洁,王继周,毛曦,路文娟. 基于语义编码的自然语言时空问句语义理解. 测绘科学. 2024(11): 197-206 .
    13. 刘瑜,汪珂丽,邢潇月,郭浩,张维昱,罗琴瑶,高松,黄舟,李海峰,李新,王姣娥,王劲峰,朱递. 地理分析中的空间效应. 地理学报. 2023(03): 517-531 .
    14. 杨颖. 人工智能在地图学中的应用展望. 电子技术. 2023(03): 162-163 .
    15. 诸云强,孙凯,胡修棉,闾海荣,王新兵,杨杰,王曙,李威蓉,宋佳,苏娜,牟兴林. 大规模地球科学知识图谱构建与共享应用框架研究与实践. 地球信息科学学报. 2023(06): 1215-1227 .
    16. 陆锋,诸云强,张雪英. 时空知识图谱研究进展与展望. 地球信息科学学报. 2023(06): 1091-1105 .
    17. 诸云强,孙凯,李威蓉,王曙,宋佳,程全英,杨杰,牟兴林,耿文广,代小亮. 地球科学知识图谱比较分析与启示:构建方法与内容视角. 高校地质学报. 2023(03): 382-394 .
    18. 张彤,刘仁宇,王培晓,高楚林,刘杰,王望舒. 感知物理先验的机器学习及其在地理空间智能中的研究前景. 地球信息科学学报. 2023(07): 1297-1311 .
    19. 丁建丽,葛翔宇,王瑾杰,赵爽,丁玥,秦少峰,朱传梅,马雯. 地理学领域的人工智能应用与思考. 新疆大学学报(自然科学版)(中英文). 2023(04): 385-397 .
    20. 付偲,李超岭,张海燕,刘畅,李丰丹. 基于多模态特征融合的地质体识别方法. 地球科学. 2023(10): 3743-3752 .
    21. Yunqiang ZHU,Kai SUN,Shu WANG,Chenghu ZHOU,Feng LU,Hairong LV,Qinjun QIU,Xinbing WANG,Yanmin QI. An adaptive representation model for geoscience knowledge graphs considering complex spatiotemporal features and relationships. Science China Earth Sciences. 2023(11): 2563-2578 .
    22. 诸云强,孙凯,王曙,周成虎,陆锋,闾海荣,邱芹军,王新兵,祁彦民. 顾及复杂时空特征及关系的地球科学知识图谱自适应表达模型. 中国科学:地球科学. 2023(11): 2609-2622 .
    23. 陈杰,邓敏,刘启亮,石岩,刘慧敏. 大数据智能时代地理信息科学专业人才培养方案的提质与实践. 测绘通报. 2023(11): 163-167 .
    24. 黄露,侯爱羚. 基于省市联动的基础测绘数据智能更新技术. 地理空间信息. 2023(12): 83-85 .
    25. 许磊,李琪,陶雲,余红楚,杜文英,陈泽强,陈能成. 数据驱动的短临降水预报可靠性分析技术体系研究. 时空信息学报. 2023(04): 508-517 .
    26. 贺智,陈逸敏,刘凯. AI时代地理信息科学一流本科专业课程建设探索. 测绘通报. 2023(S2): 60-63 .
    27. 杨学习,邓敏,刘瑜. 社会感知与地理空间智能的研究动态与展望——“社会感知与地理空间智能”专栏导读. 地理与地理信息科学. 2022(01): 1-4 .
    28. 李双成,张文彬,陈立英,梁泽,张雅娟,王铮. 孪生空间及其应用——兼论地理研究空间的重构. 地理学报. 2022(03): 507-517 .
    29. 孔宇,甄峰,张姗琪. 智能技术影响下的城市空间研究进展与思考. 地理科学进展. 2022(06): 1068-1081 .
    30. 刘瑜,郭浩,李海峰,董卫华,裴韬. 从地理规律到地理空间人工智能. 测绘学报. 2022(06): 1062-1069 .
    31. 涂伟,夏吉喆,汪驰升,陆旻,乐阳. 面向智慧城市的空间计算与分析类课程教学模式探索与实践. 测绘地理信息. 2022(S1): 14-17 .
    32. 高嘉良,陆锋,彭澎,徐阳. 基于网络文本迁移学习的旅游知识图谱构建. 武汉大学学报(信息科学版). 2022(08): 1191-1200+1219 .
    33. 武芳,杜佳威,钱海忠,翟仁健. 地图综合智能化研究的发展与思考. 武汉大学学报(信息科学版). 2022(10): 1675-1687 .
    34. 兰锐,陈慧玲,童杨辉. “自然资源大脑”构建关键技术及应用设想. 自然资源信息化. 2022(05): 99-105 .
    35. 慎利,徐柱,李志林,刘万增,崔秉良. 从地理信息服务到地理知识服务:基本问题与发展路径. 测绘学报. 2021(09): 1194-1202 .
    36. 张永生,张振超,童晓冲,纪松,于英,赖广陵. 地理空间智能研究进展和面临的若干挑战. 测绘学报. 2021(09): 1137-1146 .
    37. 艾廷华. 深度学习赋能地图制图的若干思考. 测绘学报. 2021(09): 1170-1182 .

    Other cited types(13)

Catalog

    Article views PDF downloads Cited by(50)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return