HU Cancheng, WANG Changcheng, SHEN Peng. A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1943-1950. DOI: 10.13203/j.whugis20200281
Citation: HU Cancheng, WANG Changcheng, SHEN Peng. A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1943-1950. DOI: 10.13203/j.whugis20200281

A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test

More Information
  • Received Date: October 24, 2020
  • Available Online: October 17, 2021
  • Objectives 

    Compared with the traditional single-polarization synthetic aperture radar(SAR), the full-polarization SAR can obtain more abundant polarimetric scattering information and describe the geometric and physical characteristics of the target more comprehensively.

    Methods 

    To make full use of the polarimetric scattering information of ground objects, we utilize the polarimetric coherence matrix used to describe distributed targets and the polarimetric likelihood ratio test (PolLRT) based on complex Wishart distribution to accurately evaluate the temporal similarity between master and slave image blocks.

    Results 

    Compared with the traditional method, this method not only considers the cross-correlation information between the same polarization, but also considers the cross-correlation information between different polarization modes, to improve the matching performance of the time series polarization information. In the real experiment, two fully polarized unmanned aerial vehicle(UAV) SAR data are used as experimental data, and the external global positioning system (GPS) deformation data is used as the reference data.

    Conclusions 

    The experimental results show that the proposed algorithm has higher deformation extraction accuracy and shows more robust deformation extraction performance under different matching window sizes.

  • [1]
    van Westen C J, van Asch T W J, Soeters R. Landslide Hazard and Risk Zonation: Why Is It Still so Difficult?[J]. Bulletin of Engineering Geology and the Environment, 2006, 65(2): 167-184. doi: 10.1007/s10064-005-0023-0
    [2]
    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    Huang Runqiu. Large-Scale Landslides and Their Sliding Mechanisms in China Since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
    [3]
    戴可人, 卓冠晨, 许强, 等. 雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1778-1786. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201912006.htm

    Dai Keren, Zhuo Guanchen, Xu Qiang, et al. Tracing the Pre-failure Two-Dimensional Surface Displacements of Nanyu Landslide, Gansu Province with Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1778-1786. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201912006.htm
    [4]
    史绪国, 张路, 许强, 等. 黄土台塬滑坡变形的时序InSAR监测分析[J]. 武汉大学学报(信息科学版), 2019, 44(7): 1027-1034.

    Shi Xuguo, Zhang Lu, Xu Qiang, et al. Monitoring Slope Displacements of Loess Terrace Using Time Series InSAR Analysis Technique[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1027-1034.
    [5]
    Harant O, Bombrun L, Vasile G, et al. Displacement Estimation by Maximum-Likelihood Texture Tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 398-407. doi: 10.1109/JSTSP.2010.2100365
    [6]
    Gabriel A K, Goldstein R M, Zebker H A. Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry[J]. Journal of Geophysical Research, 1989, 94(B7): 9183. doi: 10.1029/JB094iB07p09183
    [7]
    Michel R, Avouac J P, Taboury J. Measuring Ground Displacements from SAR Amplitude Images: Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(7): 875-878. doi: 10.1029/1999GL900138
    [8]
    Michel R, Avouac J P, Taboury J. Measuring near Field Coseismic Displacements from SAR Images: Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(19): 3017-3020. doi: 10.1029/1999GL900524
    [9]
    Zhang L, Liao M S, Balz T, et al. Monitoring Landslide Activities in the Three Gorges Area with Multi-frequency Satellite SAR Data Sets[M]//Scaioni M. Modern Technologies for Landslide Monitoring and Prediction. Berlin, Heidelberg: Springer, 2015.
    [10]
    李佳, 李志伟, 汪长城, 等. SAR偏移量跟踪技术估计天山南依内里切克冰川运动[J]. 地球物理学报, 2013, 56(4): 1226-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304019.htm

    Li Jia, Li Zhiwei, Wang Changcheng, et al. Using SAR Offset-Tracking Approach to Estimate Surface Motion of the South Inylchek Glacier in Tianshan[J]. Chinese Journal of Geophysics, 2013, 56(4): 1226-1236. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304019.htm
    [11]
    Hu J, Li Z W, Ding X L, et al. Two-Dimensional Co-seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching[J]. Sensors, 2008, 8(10): 6484-6495. doi: 10.3390/s8106484
    [12]
    Cai J H, Wang C C, Mao X K, et al. An Adaptive Offset Tracking Method with SAR Images for Landslide Displacement Monitoring[J]. Remote Sensing, 2017, 9: 830. doi: 10.3390/rs9080830
    [13]
    Wang C C, Shen P, Li X F, et al. A Novel Vessel Velocity Estimation Method Using Dual-Platform TerraSAR-X and TanDEM-X Full Polarimetric SAR Data in Pursuit Monostatic Mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6130-6144. doi: 10.1109/TGRS.2019.2904465
    [14]
    Lee J S, Hoppel K W, Mango S A, et al. Intensity and Phase Statistics of Multilook Polarimetric and Interferometric SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1017-1028. doi: 10.1109/36.312890
    [15]
    Korosov A, Rampal P. A Combination of Feature Tracking and Pattern Matching with Optimal Parametrization for Sea Ice Drift Retrieval from SAR Data[J]. Remote Sensing, 2017, 9(3): 258. doi: 10.3390/rs9030258
    [16]
    Tong X H, Ye Z, Xu Y S, et al. A Novel Subpixel Phase Correlation Method Using Singular Value Decomposition and Unified Random Sample Consensus[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4143-4156. doi: 10.1109/TGRS.2015.2391999
    [17]
    Erten E, Reigber A, Hellwich O, et al. Glacier Velocity Monitoring by Maximum Likelihood Texture Tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 394-405. doi: 10.1109/TGRS.2008.2009932
    [18]
    Wang C C, Mao X K, Wang Q J. Landslide Displacement Monitoring by a Fully Polarimetric SAR Offset Tracking Method[J]. Remote Sensing, 2016, 8(8): 624. doi: 10.3390/rs8080624
    [19]
    Woodhouse I H. Polarimetric Radar Imaging: From Basics to Applications by Jong-Sen Lee and EricPottier[J]. International Journal of Remote Sensing, 2012, 33(1): 333-334. doi: 10.1080/01431161.2010.519925
    [20]
    Shen P, Wang C C, Gao H, et al. An Adaptive Nonlocal Mean Filter for PolSAR Data with Shape-Adaptive Patches Matching[J]. Sensors, 2018, 18(7): 2215. doi: 10.3390/s18072215
    [21]
    Deledalle C A, Denis L, Tupin F, et al. NL-SAR: A Unified Nonlocal Framework for Resolution-Preserving(Pol)(in)SAR Denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2021-2038. doi: 10.1109/TGRS.2014.2352555
    [22]
    Goodman N R. Statistical Analysis Based on a Certain Multivariate Complex Gaussian Distribution (an Introduction)[J]. The Annals of Mathematical Statistics, 1963, 34(1): 152-177. doi: 10.1214/aoms/1177704250
    [23]
    Conradsen K, Nielsen A A, Schou J, et al. A Test Statistic in the Complex Wishart Distribution and Its Application to Change Detection in Polarimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1): 4-19. doi: 10.1109/TGRS.2002.808066
    [24]
    Chen J, Chen Y L, An W T, et al. Nonlocal Filtering for Polarimetric SAR Data: A Pretest Approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1744-1754. doi: 10.1109/TGRS.2010.2087763
    [25]
    Crandell D R. Movement of the Slumgullion Earthflow Near Lake City, Colorado [J]. Geologic and Hydrologic Sciences, 1961(1): B136–B139.
    [26]
    Milillo P, Fielding E J, Shulz W H, et al. COSMO-SkyMed Spotlight Interferometry over Rural Areas: The Slumgullion Landslide in Colorado, USA[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 2919-2926. doi: 10.1109/JSTARS.2014.2345664
  • Related Articles

    [1]CHANG Yonglei, YANG Jie, LI Pingxiang, ZHAO Lingli, YU Jie. Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 762-767. DOI: 10.13203/j.whugis20140828
    [2]LI Lan, CHEN Erxue, LI Zengyuan, FENG Qi, ZHAO Lei. K-Wishart Classifier for PolSAR Data and Its Performance Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1498-1504. DOI: 10.13203/j.whugis20140649
    [3]CHEN Jianhong, ZHAO Yongjun, LAI Tao, LIU Wei, HUANG Jie. Fast Non-local Means Filtering of SLC Fully PolSAR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 629-634. DOI: 10.13203/j.whugis20140089
    [4]XIA Guisong, XUE Nan, WANG Zifeng, ZHANG Liangpei. Anisotropic Diffusion on Complex Tensor Fields for PolSAR Image Filtering[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1533-1538,1556. DOI: 10.13203/j.whugis20140630
    [5]ZHAO Lei, CHEN Erxue, LI Zengyuan, FENG Qi, LI Lan, YANG Hao. Segmentation of PolSAR Data Based on Mean-Shift and Spectral Graph Partitioning and Its Evaluation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1061-1068. DOI: 10.13203/j.whugis20130681
    [6]FU Haiqiang, WANG Changcheng, ZHU Jianjun, XIE Qinghua, ZHAO Rong. A Polarimetric Classification Method Based on Neumann Decomposition[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 607-611. DOI: 10.13203/j.whugis20130372
    [7]HUANG Xiaodong, LIU Xiuguo, CHEN Qihao, CHEN Qi. An Integrated Multi\|characteristics Buildings Segmentation Model of PolSAR Images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 450-454.
    [8]YU Jie, LIU Limin, LI Xiaojuan, ZHAO Zheng. Applications of ICA for Filtering of Fully Polarimetric SAR Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 212-216.
    [9]YANG Jie, ZHAO Lingli, LI Pingxiang, LANG Fengkai. Preserving Polarimetric Scattering Characteristics Classification by Introducing Normalized Circular-pol Correlation Coefficient[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 911-914.
    [10]ZOU Tongyuan, YANG Wen, DAI Dengxin, SUN Hong. An Unsupervised Classification Method of POLSAR Image[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 910-913.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (971) PDF downloads (89) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return