WANG Lixia, ZHANG Haixu, LIU Zhao, ZHANG Shuangcheng, KONG Jinling, GAO Liqian. A Coupling Model of Net Primary Productivity Pattern Simulation and Prediction[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1756-1765. DOI: 10.13203/j.whugis20210063
Citation: WANG Lixia, ZHANG Haixu, LIU Zhao, ZHANG Shuangcheng, KONG Jinling, GAO Liqian. A Coupling Model of Net Primary Productivity Pattern Simulation and Prediction[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1756-1765. DOI: 10.13203/j.whugis20210063

A Coupling Model of Net Primary Productivity Pattern Simulation and Prediction

Funds: 

The National Natural Science Foundation of China 41471452

the Fundamental Research Funds for the Central Universities 300102269201

the Fundamental Research Funds for the Central Universities 300102299206

the Key Research and Development Program of Shaanxi Province 2020ZDLSF06-07

More Information
  • Author Bio:

    WANG Lixia, PhD, associate professor, majors in environmental remote sensing and GIS. E-mail: zylxwang@chd.edu.cn

  • Received Date: January 30, 2021
  • Published Date: November 04, 2021
  •   Objectives  Net primary productivity (NPP) not only directly reflects the production of vegetation communities, but also is a major factor in determining ecosystem carbon sources/sinks and regulating ecological processes.
      Methods  We propose a new approach which couples the CASA(Carnegie-Ames-Stanford approach)model with the CA-Markov model to simulate and predict NPP at the pixel scale, thus reflecting the spatiotemporal distribution characteristics of NPP and predicting the possible directions of changes in NPP. Using the Weihe River basin as the study area, we estimated NPP in 2000, 2005, 2010 and 2015 by the CASA model based on NDVI(normalized difference vegetation index) MOD13Q1 data, meteorological data and vegetation distribution data, analyzed the spatio-temporal distribution characteristics of NPP under the changes pattern of climate fators and topographic factors. The CA-Markov model is coupled to simulate the changes of NPP in 2020 and predict the changes of NPP in 2025, and 2030.
      Results  The results show that the coupling of CASA and CA-Markov model has good applicability. Comparing the estimate and predicted values of NPP in 2015, the Kappa coefficient reaches 0.877 6 which indicates that the coupled model has high accuracy and good applicability for NPP prediction. And in the next 10 years, the NPP classes keep transforming to higher coverage areas which will mainly distribute above Zhangjiashan of Jinghe River and Xianyang to Tongguan of Weihe River.
      Conclusions  This study have important practical significance for understanding the spatial and temporal evolution characteristics and mechanisms of basin vegetation and promoting the ecological security in basin.
  • [1]
    Field C B, Behrenfeld M J, Randerson J T, et al. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components[J]. Science, 1998, 281: 237-240 doi: 10.1126/science.281.5374.237
    [2]
    王正兴, 刘闯, Huete Alfredo. 植被指数研究进展: 从AVHRRNDVI到MODIS-EVI[J]. 生态学报, 2003, 23 (5): 979-987 doi: 10.3321/j.issn:1000-0933.2003.05.020

    Wang Zhengxing, Liu Chuang, Huete Alfredo. From AVHRR-NDVI to MODIS-EVI: Advances in Vegetation Index Research[J]. Acta Ecologica Sinica, 2003, 23(5): 979-987 doi: 10.3321/j.issn:1000-0933.2003.05.020
    [3]
    周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 1996, 20(1): 11-19 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB601.001.htm

    Zhou Guangsheng, Zhang Xinshi. Study on NPP of Natural Vegetation in China Under Global Climate Change[J]. Acta Phytoecologica Sinica, 1996, 20 (1): 11-19 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB601.001.htm
    [4]
    王丽霞, 余东洋, 刘招, 等. 渭河流域NDVI与气候因子时空变化及相关性研究[J]. 水土保持研究, 2019, 26 (2): 249-254 https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201902039.htm

    Wang Lixia, Yu Dongyang, Liu Zhao, et al. Study on Tempo-Spatial Variations of NDVI and Climatic Factors and Their Correlation in the Weihe Watershed[J]. Research of Soil and Water Conservation, 2019, 26(2): 249-254 https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201902039.htm
    [5]
    Zhao F, Xu B, Yang X C, et al. Remote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net Primary Productivity (NPP): A Case Study in the Xilingol Grassland of Northern China[J]. Remote Sensing, 2014, 6(6): 5 368- 5 386 doi: 10.3390/rs6065368
    [6]
    Rafique R, Zhao F, de Jong R, et al. Global and Regional Variability and Change in Terrestrial Ecosystems Net Primary Production and NDVI: A ModelData Comparison[J]. Remote Sensing, 2016, 8 (3): 177-192 doi: 10.3390/rs8030177
    [7]
    张娜, 毛飞跃, 龚威. 2009年武汉市植被净初级生产力估算[J]. 武汉大学学报·信息科学版, 2011, 36(12): 1 447-1 450 http://ch.whu.edu.cn/article/id/744

    Zhang Na, Mao Feiyue, Gong Wei. Estimation of Net Primary Productivity of Vegetation of Wuhan in 2009[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1 447-1 450 http://ch.whu.edu.cn/article/id/744
    [8]
    刘国华, 傅伯杰. 全球气候变化对森林生态系统的影响[J]. 自然资源学报, 2001, 16(1): 71-78 doi: 10.3321/j.issn:1000-3037.2001.01.013

    Liu Guohua, Fu Bojie. Effects of Global Climate Change on Forest Ecosystems[J]. Journal of Natural Resources, 2001, 16(1): 71-78 doi: 10.3321/j.issn:1000-3037.2001.01.013
    [9]
    Ichii K, Hashimoto H, Nemani R, et al. Modeling the Interannual Variability and Trends in Gross and Net Primary Productivity of Tropical Forests from 1982 to 1999[J]. Global and Planetary Change, 2005, 48(4): 274-286 doi: 10.1016/j.gloplacha.2005.02.005
    [10]
    方精云, 朴世龙, 贺金生, 等. 近20年来中国植被活动在增强[J]. 中国科学C辑(生命科学), 2003, 33(6): 554-565 https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK200306009.htm

    Fang Jingyun, Piao Shilong, He Jinsheng, et al. Vegetation Activity in China is Iincreasing in Recent 20 Years[J]. Sciencein China Serices C: Life Sciences, 2003, 33(6): 554-565 https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK200306009.htm
    [11]
    侯英雨, 柳钦火, 延昊, 等. 我国陆地植被净初级生产力变化规律及其对气候的响应[J]. 应用生态学报, 2007, 18 (7): 1 546-1 553 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200707022.htm

    Hou Yingyu, Liu Qinhuo, Yan Hao, et al. Variation Trends of China Terrestrial Vegetation Net Primary Productivity and Its Responses to Climate Factors in 1982—2000[J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1 546-1 553 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200707022.htm
    [12]
    Tang B J, Wu D H, Zhao X, et al. The Observed Impacts of Wind Farmson Local Vegetation Growth in Northern China[J]. Remote Sensing, 2017, 9(4): 332-341 doi: 10.3390/rs9040332
    [13]
    Zhu L K, Southworth J. Disentangling the Relationships Between Net Primary Production and Precipitation in Southern Africa Savannas Using Satellite Observations from 1982 to 2010[J]. Remote Sensing, 2013, 5(8): 3 803-3 825 doi: 10.3390/rs5083803
    [14]
    Guo Q, Fu B H, Shi P L, et al. Satellite Monitoring the Spatial-Temporal Dynamics of Desertification in Response to Climate Change and Human Activities Across the Ordos Plateau, China[J]. Remote Sensing, 2017, 9(6): 525 doi: 10.3390/rs9060525
    [15]
    张猛, 曾永年. 融合高时空分辨率数据估算植被净初级生产力[J]. 遥感学报, 2018, 22(1): 143-152 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801013.htm

    Zhang Meng, Zeng Yongnian. Net Primary Production Estimation by Using Fusion Remote Sensing Data with High Spatial and Temporal Resolution [J]. Journal of Remote Sensing, 2018, 22(1): 143- 152 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801013.htm
    [16]
    Guan X B, Shen H F, Gan W X, et al. A 33-Year NPP Monitoring Study in Southwest China by the Fusion of Multi-Source Remote Sensing and Station Data[J]. Remote Sensing, 2017, 9(10): 1 082 doi: 10.3390/rs9101082
    [17]
    岑奕, 张良培, 村松加奈子. 纪伊半岛地区植被净初级生产力的遥感应用研究[J]. 武汉大学学报·信息科学版, 2008, 33(12): 1 221-1 224 http://ch.whu.edu.cn/article/id/1768

    Cen Yi, Zhang Liangpei, Kanako Muramatsu. Net Primary Production Estimation in Kii Peninsula Using Terra/MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33 (12): 1 221-1 224 http://ch.whu.edu.cn/article/id/1768
    [18]
    王伦澈, 龚威, 张淼, 等. 武汉地区植被NPP动态监测研究[J]. 武汉大学学报·信息科学版, 2013, 38(5): 548-552 http://ch.whu.edu.cn/article/id/2635

    Wang Lunche, Gong Wei, Zhang Miao, et al. Dynamic Monitoring of Vegetation NPP in Wuhan Based on MODIS[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 548- 552 http://ch.whu.edu.cn/article/id/2635
    [19]
    孙睿, 朱启疆. 中国陆地植被净第一性生产力及季节变化研究[J]. 地理学报, 2000, 55(1): 36-45 doi: 10.3321/j.issn:0375-5444.2000.01.005

    Sun Rui, Zhu Qijiang. Distribution and Seasonal Change of Net Primary Productivity in China from April, 1992 to March, 1993[J]. Acta Geographica Sinica, 2000, 55(1): 36-45 doi: 10.3321/j.issn:0375-5444.2000.01.005
    [20]
    赵安周, 朱秀芳, 刘宪锋, 等. 1965—2013年渭河流域降水时空变化分析[J]. 自然资源学报, 2015, 30(11): 1 896-1 909 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201511010.htm

    Zhao Anzhou, Zhu Xiufang, Liu Xianfeng, et al. Spatial and Temporal Variation of Precipitation in Weihe River Basin from 1965 to 2013[J]. Journal of Natural Resources, 2015, 30(11): 1 896-1 909 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201511010.htm
    [21]
    王强, 张廷斌, 易桂花, 等. 横断山区2004—2014年植被NPP时空变化及其驱动因子[J]. 生态学报, 2017, 37(9): 3 084-3 095 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201709023.htm

    Wang Qiang, Zhang Tingbin, Yi Guihua, et al. Tempo-Spatial Variations and Driving Factors Analysis of Net Primary Productivity in the Hengduan Mountain Area from 2004 to 2014[J]. Acta Ecologica Sinica, 2017, 37(9): 3 084-3 095 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201709023.htm
    [22]
    常学礼, 吕世海, 冯朝阳, 等. 地形对草甸草原植被生产力分布格局的影响[J]. 生态学报, 2015, 35 (10): 3 339-3 348 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201510023.htm

    Chang Xueli, Lü Shihai, Feng Zhaoyang, et al. Impact of Topography on the Spatial Distribution Pattern of Net Primary Productivity in a Meadow[J]. Acta Ecologica Sinica, 2015, 35(10): 3 339-3 348 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201510023.htm
    [23]
    杨国清, 刘耀林, 吴志峰. 基于CA-Markov模型的土地利用格局变化研究[J]. 武汉大学学报·信息科学版, 2007, 32(5): 414-418 http://ch.whu.edu.cn/article/id/1887

    Yang Guoqing, Liu Yaolin, Wu Zhifeng. Analysis and Simulation of Land-Use Temporal and Spatial Pattern Based on CA-Markov Model[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 414-418 http://ch.whu.edu.cn/article/id/1887
    [24]
    朱文泉, 陈云浩, 徐丹, 等. 陆地植被净初级生产力计算模型研究进展[J]. 生态学杂志, 2005, 24(3): 296-300 doi: 10.3321/j.issn:1000-4890.2005.03.014

    Zhu Wenquan, Chen Yunhao, Xu Dan, et al. Advances in Terrestrial Net Primary Productivity (NPP) Estimation Models[J]. Chinese Journal of Ecology, 2005, 24(3): 296-300 doi: 10.3321/j.issn:1000-4890.2005.03.014
    [25]
    朴世龙, 方精云, 郭庆华. 利用CASA模型估算我国植被净第一性生产力[J]. 植物生态学报, 2001, 25 (5): 603-608 doi: 10.3321/j.issn:1005-264X.2001.05.015

    Piao Shilong, Fang Jingyun, Guo Qinghua. Application of CASA Model to the Estimation of Chinese Terrestrial Net Primary Productivity[J]. Acta Phytoecologica Sinica, 2001, 25(5): 603-608 doi: 10.3321/j.issn:1005-264X.2001.05.015
    [26]
    穆少杰, 周可新, 齐杨, 等. 内蒙古植被降水利用效率的时空格局及其驱动因素[J]. 植物生态学报, 2014, 38(1): 1-16 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201401001.htm

    Mu Shaojie, Zhou Kexin, Qi Yang, et al. SpatioTemporal Patterns of Precipitation-Use Efficiency of Vegetation and Their Controlling Factors in Inner Mongolia[J]. Chinese Journal of Plant Ecology, 2014, 38(1): 1-16 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201401001.htm
    [27]
    康俊锋, 李爽, 方雷. 云环境下基于CA-Markov的土地利用变化预测方法[J]. 武汉大学学报·信息科学版, 2020, 45(7): 1 021-1 026, 1 034 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202007011.htm

    Kang Junfeng, Li Shuang, Fang Lei. Land Use Change Prediction Method Based on CA-Markov Model Under Cloud Computing Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1 021-1 026, 1 034 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202007011.htm
    [28]
    郑青华, 罗格平, 朱磊, 等. 基于CA-Markov模型的伊犁河三角洲景观格局预测[J]. 应用生态学报, 2010, 21(4): 873-882 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201004011.htm

    Zheng Qinghua, Luo Geping, Zhu Lei, et al. Prediction of Landscape Patterns in Ili River Delta Based on CA-Markov Model[J]. Chinese Journal of Applied Ecology, 2010, 21(4): 873-882 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201004011.htm
    [29]
    Karimi H, Jafarnezhad J, Khaledi J, et al. Monitoring and Prediction of Land Use/Land Cover Changes Using CA-Markov Model: A Case Study of Ravansar County in Iran[J]. Arabian Journal of Geosciences, 2018, 11(19): 1-9 http://www.onacademic.com/detail/journal_1000040871706410_392e.html
    [30]
    胡曾曾, 赵志龙, 张贵祥. 非首都功能疏解背景下北京市人口空间分布形态模拟[J]. 地球信息科学学报, 2018, 20(2): 205-216 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201802009.htm

    Hu Zengzeng, Zhao Zhilong, Zhang Guixiang. Simulation and Projection of the Spatial Pattern of the Population in Beijing Under the Background of Non-Capital Function Extraction[J]. Journal of GeoInformation Science, 2018, 20(2): 205-216 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201802009.htm
    [31]
    Culik K I I, Hurd L P, Yu S. Computation Theoretic Aspects of Cellular Automata[J]. Physica D: Nonlinear Phenomena, 1990, 45(3): 357-378 http://www.onacademic.com/detail/journal_1000034570652310_3337.html
    [32]
    Durmusoglu Z O, Tanriover A A. Modelling Land Use/Cover Change in Lake Mogan and Surroundings Using CA-Markov Chain Analysis[J]. Journal of Environmental Biology, 2017, 38(5(SI)): 981-989 http://www.jeb.co.in/journal_issues/201709_sep17_spl/paper_15.pdf
    [33]
    徐建华. 现代地理学中的数学方法[M]. 北京: 高等教育出版社, 2002

    Xu Jianhua. Mathematical Methods in Contemporary Geography[M]. Beijing: Higher Education Press, 2002
    [34]
    杨玲莉. 2000~2014年黄河源区植被NDVI时空变化特征与气候变化响应分析[D]. 成都: 成都理工大学, 2016

    Yang Lingli. Spatial-Temporal Variation of NDVI and Analysis of Climate Response in the Source Region of the Yellow River from 2000 to 2014[D]. Chengdu: Chengdu University of Technology, 2016
    [35]
    张明. 区域土地利用结构及其驱动因子的统计分析[J]. 自然资源学报, 1999, 14(4): 381-384 doi: 10.3321/j.issn:1000-3037.1999.04.018

    Zhang Ming. Statistical Analysis to Regional Land Use Structure and Its Driving Forces[J]. Journal of Natural Resources, 1999, 14(4): 381-384 doi: 10.3321/j.issn:1000-3037.1999.04.018
  • Related Articles

    [1]Chen Xinyang, Long Xiaoxiang, Li Qingpeng, Li Jingmei, Han Qijin, Xu Zhaopeng, Yao Weiyuan. Data Proccing and Accuracy Verification for Laser Altimeter of Terrestrial Ecosystem Carbon Inventory Satellite[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230110
    [2]ZHOU Ping, TANG Xinming, WANG Xia, LIU Changru, WANG Zhenming. Geometric Accuracy Evaluation Model of Domestic Push-Broom Mapping Satellite Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1628-1634. DOI: 10.13203/j.whugis20160486
    [3]YAN Wei, LIU Jianjun, REN Xin, WANG Fenfei. Accuracy Analysis of CE-3 Moon-Based Ultraviolet Telescope Geometric Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 133-137, 166. DOI: 10.13203/j.whugis20150162
    [4]MENG Weican, ZHU Shulong, CAO Wen, CAO Bincai, GAO Xiang. High Accuracy On-Orbit Geometric Calibration of Linear Push-broom Cameras[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1392-1399,1413. DOI: 10.13203/j.whugis20140534
    [5]YIN Chuan, WANG Yanhui. Target Geometry Matching Threshold in Incremental Updatingof Road Networks Based on OSTU[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1061-1067. DOI: 10.13203/j.whugis20130575
    [6]YAN Li, JIANG Yun, WANG Jun. Building of Rigorous Geometric Processing Model Based onLine-of-Sight Vector of ZY-3 Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1451-1455.
    [7]LIU Liangming, YE Yuanxin, FAN Dengke, XU Qi. Study on Geometric Rectification for FY-2 S-VISSR Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 384-388.
    [8]WU Fang, ZHU Kunpeng. Geometric Accuracy Assessment of Linear Features' Simplification Algorithms[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 600-603.
    [9]Li Deren, Wang Xinhua. Geometric Calibration of CCD Array Camera[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 308-313,317.
    [10]Fan Yonghong. Geometric Rectification of SAR Image[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 39-41.
  • Cited by

    Periodical cited type(32)

    1. 王蕾,何鑫,廖成. 基于知识库相似检索的自然资源调查监测图斑辅助辨识方法. 测绘通报. 2025(02): 137-142 .
    2. 张秀锦,张秀民. 基于轻便的node.js地图识别模型实现分析. 山东交通科技. 2024(02): 130-132 .
    3. 汤冻,奚晓轶,闫涛. 一种用于电视节目播出异态识别的人工智能模型训练方法. 电视技术. 2023(01): 61-65 .
    4. 梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 .
    5. 陶立清,黄国满,杨书成,王童童,盛辉军,范海涛. 一种利用卷积神经网络的干涉图去噪方法. 武汉大学学报(信息科学版). 2023(04): 559-567 .
    6. 桂志鹏,胡晓辉,刘欣婕,凌志鹏,姜屿涵,吴华意. 顾及地理语义的地图检索意图形式化表达与识别. 地球信息科学学报. 2023(06): 1186-1201 .
    7. 李从初,励臣儒,朱佳敏,姚浩立. 基于迁移学习和Xception网络的海雾能见度等级估测研究. 浙江气象. 2023(01): 23-28 .
    8. 田启川,吴施瑶,马英楠. 基于卷积神经网络的光学遥感影像分析综述. 计算机应用与软件. 2023(10): 1-9+45 .
    9. 樊翔宇,张聪,杨柳. 融合梅尔谱和循环残差的小样本音频分类模型. 计算机仿真. 2022(02): 195-202 .
    10. 金海峰,吴楠,张悠然. 智慧家庭中的人体动作识别研究综述. 软件导刊. 2022(04): 240-247 .
    11. 冯新扬,邵超. 跨卷积网络特征融合的SAR图像目标识别. 系统仿真学报. 2021(03): 554-561 .
    12. 任加新,刘万增,李志林,李然,翟曦. 利用卷积神经网络进行“问题地图”智能检测. 武汉大学学报(信息科学版). 2021(04): 570-577 .
    13. 王建华,冉煜琨. 适用于便携式设备的深度神经网络眼动跟踪. 计算机与现代化. 2021(08): 58-63 .
    14. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 .
    15. 任福,侯宛玥. 面向机器阅读的地图名称注记类别识别方法. 武汉大学学报(信息科学版). 2020(02): 273-280 .
    16. 吴晓玲,黄金雪,何文海. 基于深度卷积神经网络的塑料垃圾分类研究. 塑料科技. 2020(04): 86-89 .
    17. 叶宇光. 基于深度残差网络的图像识别技术研究. 韶关学院学报. 2020(06): 18-22 .
    18. 王科举,廉小亲,陈彦铭,安飒,龚永罡. 基于深度学习的机械臂视觉系统. 信息技术与信息化. 2020(08): 203-208 .
    19. 侯东阳,武昊,陈军. 时空数据Web搜索的研究进展. 地理信息世界. 2020(04): 1-12+21 .
    20. 刘彩玲,岳荷荷. 基于(2D)~2-PCANet的种子图像识别. 计算机应用与软件. 2020(10): 232-238 .
    21. 谢万里,李宏志,周辉,尹绍武. 基于迁移学习与卷积神经网络的鱼濒死预警系统研究. 中国农机化学报. 2019(02): 186-192 .
    22. 宋益盛,林志杰. 基于迁移学习和数据增强技术的物种识别. 现代计算机. 2019(14): 57-63 .
    23. 李雄,文开福,钟小明,杨辉,秦德浩. 基于深度学习的人脸识别考勤管理系统开发. 实验室研究与探索. 2019(07): 115-118+123 .
    24. 李静,韩震,王文柳,崔艳荣. 基于OverFeat模型的长江口南汇潮滩植被分类. 生态科学. 2019(04): 135-141 .
    25. 江涛,王新杰. 基于卷积神经网络的高分二号影像林分类型分类. 北京林业大学学报. 2019(09): 20-29 .
    26. 呙鹏程,吴礼洋. 融合卷积特征与判别字典学习的低截获概率雷达信号识别. 兵工学报. 2019(09): 1881-1889 .
    27. 刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用. 农业工程学报. 2019(17): 194-204 .
    28. 门计林,刘越岩,张斌,周繁. 多结构卷积神经网络特征级联的高分影像土地利用分类. 武汉大学学报(信息科学版). 2019(12): 1841-1848 .
    29. 赵波,廖坤,邓春宇,谈元鹏,曹生现. 基于卷积神经学习的光伏板积灰状态识别与分析. 中国电机工程学报. 2019(23): 6981-6989+7111 .
    30. 尹宗天,谢超逸,刘苏宜,刘新如. 低分辨率图像的细节还原. 软件. 2018(05): 199-202 .
    31. 宋俊芳. 基于BP神经网络的图像分割. 数字通信世界. 2018(03): 66+170 .
    32. 朱祺夫,赵俊三,陈磊士,李易. 基于深度学习的遥感影像城市建筑用地提取. 软件导刊. 2018(10): 18-21 .

    Other cited types(62)

Catalog

    Article views PDF downloads Cited by(94)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return