Citation: | Gan Wenxia, Pan Junjie, Geng Jing, Wang Huini, Hu Xiaodi. A Fusion Method for Infrared and Visible Images in All-weather Road Scenes[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240173 |
[1] |
应申,蒋跃文,顾江岩等.面向自动驾驶的高精地图模型及关键技术[J/OL].武汉大学学报(信息科学 版):1-12[2023-11-23]. https://doi.org/10.13203/j.whugis20230227.
|
[2] |
申彩英,朱思瑶,黄兴驰.双目视觉的智能汽车目标检测算法研究[J/OL].重庆理工大学学报(自然科 学):1-8[2023-11-06]. http://kns.cnki.net/kcms/detail/50.1205.T.20231011.1117.004.html.
|
[3] |
胡淼,姜麟,陶友凤等.改进YOLOv7的自动驾驶目标检测算法[J/OL].计算机工程与应用:1-11[2023- 11-06]. http://kns.cnki.net/kcms/detail/11.2127.TP.20230922.1630.004.html.
|
[4] |
叶语同,李必军,付黎明.智能驾驶中点云目标快速检测与跟踪[J].武汉大学学报(信息科学 版),2019,44(01):139-144+152.DOI: 10.13203/j.whugis20170146.
|
[5] |
Zhang H, Xu H, Tian X, et al. Image fusion meets deep learning:A survey and perspective[J]. Information Fusion, 2021, 76:323-336.
|
[6] |
Ma J, Ma Y, Li C. Infrared and visible image fusion methods and applications:A survey[J]. Information fusion, 2019, 45:153-178.
|
[7] |
Zhang X, Demiris Y. Visible and Infrared Image Fusion Using Deep Learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
|
[8] |
Ma W, Wang K, Li J, et al. Infrared and Visible Image Fusion Technology and Application:A Review[J]. Sensors, 2023, 23(2):599.
|
[9] |
韩林凯,姚江伟,王坤峰.保留梯度和轮廓的可见光与红外图像融合[J/OL].计算机应用, 1-7[2023-11- 07] http://kns.cnki.net/kcms/detail/51.1307.TP.20230417.1032.002.html.
|
[10] |
Shuai H,Tian H,Beiyi A, et al. VDFEFuse:A novel fusion approach to infrared and visible images[J]. Infrared Physics and Technology,2022,121.
|
[11] |
Sun C, Zhang C, Xiong N. Infrared and visible image fusion techniques based on deep learning:A review[J]. Electronics, 2020, 9(12):2162.
|
[12] |
陈彦林,王志社,邵文禹等.红外与可见光图像多尺度Transformer融合方法[J].红外技 术,2023,45(03):266-275.
|
[13] |
向天烛,高熔溶,闫利等.一种顾及区域特征差异的热红外与可见光图像多尺度融合方法[J].武汉大学 学报(信息科学版),2017,42(07):911-917.DOI: 10.13203/j.whugis20141007.
|
[14] |
Li S, Kang X, Fang L, et al. Pixel-level image fusion:A survey of the state of the art[J]. information Fusion, 2017, 33:100-112.
|
[15] |
Liu J, Fan X, Huang Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022:5802-5811.Li C, Song D, Tong R, et al. Illuminationaware faster R-CNN for robust multispectral pedestrian detection[J]. Pattern Recognition, 2019, 85:161- 171.
|
[16] |
苑朝,赵亚冬,张耀等.基于YOLO轻量化的多模态行人检测算法[J/OL].图学学报:1-12[2023-11- 07]. http://kns.cnki.net/kcms/detail/10.1034.T.20231026.1644.002.html.
|
[17] |
孙文财,胡旭歌,杨志发等.基于红外及可见光图像融合的道路目标检测优化方法[J/OL].吉林大学学 报(工学版):1-8[2023-11-07]. https://doi.org/10.13229/j.cnki.jdxbgxb.20230474.
|
[18] |
Geng X, Li M, Liu W, et al. Person tracking by detection using dual visible-infrared cameras[J]. IEEE Internet of Things Journal, 2022, 9(22):23241-23251.
|
[19] |
刘万军,梁林林,曲海成.利用Transformer的多模态目标跟踪算法[J/OL].计算机工程与应用, 1- 11[2023-11-07] http://kns.cnki.net/kcms/detail/11.2127.TP.20230508.1642.022.html.
|
[20] |
Liu W, Liu W, Sun Y. Visible-Infrared Dual-Sensor Fusion for Single-Object Tracking[J]. IEEE Sensors Journal, 2023, 23(4):4118-4128.
|
[21] |
Ha Q, Watanabe K, Karasawa T, et al. MFNet:Towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017:5108-5115.
|
[22] |
Hou J, Zhang D, Wu W, et al. A generative adversarial network for infrared and visible image fusion based on semantic segmentation[J]. Entropy, 2021, 23(3):376.
|
[23] |
朱浩,谷小婧,蓝鑫等.基于多尺度轮廓增强的RGB-IR双波段图像语义分割算法[J].激光与红 外,2022,52(04):543-551.
|
[24] |
Wang Z, Xu J, Jiang X, et al. Infrared and visible image fusion via hybrid decomposition of NSCT and morphological sequential toggle operator[J]. Optik, 2020, 201:163497.
|
[25] |
Chen J,Li X,Luo L, et al. Infrared and visible image fusion based on target-enhanced multiscale transform decomposition[J]. Information Sciences,2020,508.
|
[26] |
Hui L,Xiao-Jun W,Josef K. MDLatLRR:A novel decomposition method for infrared and visible image fusion.[J]. IEEE transactions on image processing:a publication of the IEEE Signal Processing Society,2020,29.
|
[27] |
赵庆典,杨德宏.基于图像增强和二次NSCT的红外与可见光图像融合[J/OL].激光与光电子学进 展:1-17[2023-11-07]. http://kns.cnki.net/kcms/detail/31.1690.TN.20230714.1054.202.html.
|
[28] |
武凌霄,康家银,姬云翔.NSST域下基于引导滤波与稀疏表示的红外与可见光图像融合[J].红外技 术,2023,45(09):915-924.
|
[29] |
Liu Y,Chen X,Ward K R, et al. Image Fusion With Convolutional Sparse Representation.[J]. IEEE Signal Process. Lett.,2016,23(12).
|
[30] |
Liu Y, Yang X, Zhang R, et al. Entropy-based image fusion with joint sparse representation and rolling guidance filter[J]. Entropy, 2020, 22(1):118.
|
[31] |
Cvejic N, Bull D, Canagarajah N. Region-based multimodal image fusion using ICA bases[J]. IEEE Sensors Journal, 2007, 7(5):743-751.
|
[32] |
Bavirisetti D P, Xiao G, Liu G. Multi-sensor image fusion based on fourth order partial differential equations[C]//2017 20th International conference on information fusion (Fusion). IEEE, 2017:1-9.
|
[33] |
Ma J,Chen C,Li C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion,2016,31.
|
[34] |
Ma J,Zhou Z,Wang B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics and Technology,2017,82.
|
[35] |
Lihua J,Xiaomin Y,Zheng L, et al. SEDRFuse:A Symmetric Encoder-Decoder With Residual Block Network for Infrared and Visible Image Fusion[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2021,70.
|
[36] |
Han X,Hao Z,Jiayi M. Classification Saliency-Based Rule for Visible and Infrared Image Fusion[J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING,2021,7.
|
[37] |
Liu J, Fan X, Jiang J, et al. Learning a deep multi-scale feature ensemble and an edge-attention guidance for image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(1):105- 119.
|
[38] |
Ma J,Yu W,Liang P, et al. FusionGAN:A generative adversarial network for infrared and visible image fusion[J]. Information Fusion,2018,48.
|
[39] |
Yang Y, Liu J, Huang S, et al. Infrared and visible image fusion via texture conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(12): 4771-4783.
|
[40] |
Ma J, Zhang H, Shao Z, et al. GANMcC:A generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70:1-14.
|
[41] |
Xu H, Ma J, Jiang J, et al. U2Fusion:A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(1):502-518.
|
[42] |
Zhang H, Ma J. SDNet:A versatile squeeze-and-decomposition network for real-time image fusion[J]. International Journal of Computer Vision, 2021, 129:2761-2785.
|
[43] |
Tang L, Yuan J, Ma J. Image fusion in the loop of high-level vision tasks:A semantic-aware real-time infrared and visible image fusion network[J]. Information Fusion, 2022, 82:28-42.
|
[44] |
Ma J, Tang L, Xu M, et al. STDFusionNet:An infrared and visible image fusion network based on salient target detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-13.
|
[45] |
Peng C, Tian T, Chen C, et al. Bilateral attention decoder:A lightweight decoder for real-time semantic segmentation[J]. Neural Networks, 2021, 137:188-199.
|
[46] |
4Toet A. TNO Image Fusion Dataset[Internet]. figshare; 2014,https://doi.org/10.6084/m9.figshare.1008029.v2
|
[47] |
Qu G,Zhang D,Yan P. Information measure for performance of image fusion[J]. Electronics Letters,2002,38(7).
|
[48] |
Han Y, Cai Y, Cao Y, et al. A new image fusion performance metric based on visual information fidelity[J]. Information fusion, 2013, 14(2):127-135.
|
[49] |
Piella G, Heijmans H. A new quality metric for image fusion[C]//Proceedings 2003 international conference on image processing (Cat. No. 03CH37429). IEEE, 2003, 3:III-173.
|
[50] |
Paszke A, Gross S, Massa F, et al. Pytorch:An imperative style, high-performance deep learning library[J]. Advances in neural information processing systems, 2019, 32.
|
[1] | CUI Zhixiang, LAN Chaozhen, ZHANG Yongxian, HOU Huitai, QIN Jianqi. A Method Based on Depth Features for Matching Thermal Infrared Images with Visible Images[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 316-324. DOI: 10.13203/j.whugis20200181 |
[2] | TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176 |
[3] | SONG Zhina, SUI Haigang, LI Yongcheng. A Survey on Ship Detection Technology in High-Resolution Optical Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1703-1715. DOI: 10.13203/j.whugis20200481 |
[4] | XIANG Tianzhu, GAO Rongrong, YAN Li, XU Zhenliang. Region Feature Based Multi-scale Fusion Method for Thermal Infrared and Visible Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 911-917. DOI: 10.13203/j.whugis20141007 |
[5] | Shao Zhenfeng, Bai Yun, Zhou Xiran. Improved Multi-scale Retinex Image Enhancement of UnderPoor Illumination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 32-39. |
[6] | WANG Zhijun, GU Chongshi, ZHANG Zhijun. Evaluation Method of Loss-of-life Caused by Dam Breach Based on GIS and Neural Networks Optimized by Genetic Algorithms[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 64-68. |
[7] | TIAN Jing, GUO Qingsheng, FENG Ke, MA Meng. Progressive Selection Approach of Streets Based on Information Loss[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 362-365. |
[8] | YANG Guijun, LIU Qinhuo, LIU Qiang, GU Xingfa. Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 786-790. |
[9] | XING Shuai, TAN Bing, XU Qing, LI Jiansheng. A New Algorithm for Remote Sensing Image Fusion Using Complex Wavelet Transform[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 75-77. |
[10] | GONG Shengrong, YANG Shanchao. A Visible Watermarking Algorithm Holding Image Content[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 757-760. |