YANG Guijun, LIU Qinhuo, LIU Qiang, GU Xingfa. Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 786-790.
Citation: YANG Guijun, LIU Qinhuo, LIU Qiang, GU Xingfa. Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 786-790.

Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Neural Network

Funds: 国家自然科学基金资助项目(40401042,40371087);中国科学院知识创新工程重要方向资助项目(KZCX3-SW-334,KZCX3-SW-338-2);中国科学院百人计划资助项目(KZCX0415);国家教育部留学回国人员科研启动基金重点资助项目(HX040013);国防科学技术工业委员会资助项目(KJSX0401)
More Information
  • Received Date: June 26, 2007
  • Revised Date: June 26, 2007
  • Published Date: September 04, 2007
  • An approach which can take advantage of high spatial resolution feature of visible data and high temporal resolution feature of thermal infrared data,is adapted by a nonlinear fusion method based on GA-SOFM-ANN to map the relation between retrieved land surface parameters from visible data and temperature.According to this method,a result of fusing both visible data with spatial resolution feature and thermal infrared data with temporal feature is finished.A case of testing method is showed,utilizing the ASTER data.The conclusions show that it is a new approach to quickly estimate and acquire high resolution land surface temperature.
  • Related Articles

    [1]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [2]SHU Bao, LIU Hui, ZHANG Jinsheng, PAN Guofu, JIANG Jun. Performance Assessment of Partial Ambiguity Resolution Based on BDS/GPS Combined Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 989-994, 1001. DOI: 10.13203/j.whugis20150017
    [3]LIU Shuai, SUN Fuping, LI Haifeng, LIU Jing, HAO Wanliang. GLONASS Aided Ambiguity Fixing for Kinematic GPS PPP[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1238-1244. DOI: 10.13203/j.whugis20140494
    [4]ZHANG Liang, LV Hanfeng, WU Jie. Sin gle  Epoch Ambiguit y Resolution Success Rates Under Modified Objective  Function Without Prior Baseline Information[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10): 1184-1188.
    [5]LIU Jingnan, DENG Chenlong, TANG Weiming. Review of GNSS Ambiguity Validation Theory[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1009-1016. DOI: 10.13203/j.whugis20140241
    [6]WU Yue, FU Xiaolin, LI Haijun, LIU Jingbin. Application of TCAR/MCAR Method in Different Baseline Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 172-175.
    [7]LI Deren, PENG Mingjun, . Transformation Between Urban Spatial Information Irregular Grid and Regular Grid[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 160-163.
    [8]WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26.
    [9]REN Chao, OU Jikun, YUAN Yunbin. A New Method for GPS Ambiguity Resolution on-the-Fly Using Integer Whitening Filter Search[J]. Geomatics and Information Science of Wuhan University, 2004, 29(11): 960-963.
    [10]P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return