XU Hanqiu, SUN Fengqin, XU Guangzhi. Cross comparison of the Gaofen-5 AHSI and VIMI sensors[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200586
Citation: XU Hanqiu, SUN Fengqin, XU Guangzhi. Cross comparison of the Gaofen-5 AHSI and VIMI sensors[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200586

Cross comparison of the Gaofen-5 AHSI and VIMI sensors

Funds: 

The National Key Research and Development Program of China (2016YFA0600302)

More Information
  • Received Date: October 28, 2020
  • Available Online: September 26, 2023
  • The Advanced HyperSpectral Imager (AHSI) and the Visual and Infrared Multispectral Imager (VIMI) are the two sensors onboard China's Gaofen-5 remote sensing satellite. These two sensors provide images of different spectral and spatial resolutions. To date, the quantitative relationship between the two sensors' data has not been investigated in detail. To understand the quantitative relationship and the calibration agreement between AHSI and VIMI, date-coincided image pairs of the two sensors from the Dunhuang calibration site as well as the Tengzhou area were used to conduct a cross comparison. The approach was achieved by evaluating the consistency of the at-sensor radiance data between the two sensors. The results were then validated to those of near-simultaneous Landsat-8 OLI sensor. This study finds that the at-sensor radiance data of VIMI is overall lower than that of AHSI, with a mean absolute percentage error (MAPE) of 32% and an R2 of 0.817. Among the corresponding bands, the red band has the greatest difference between the two sensors, with a MAPE of more than 40%. The validation to Landsat-8 OLI shows that AHSI's radiance data is close to that of OLI with a MAPE of less than 5%, while the MAPE of VIMI is more than 20%. Given the differences between VIMI and AHSI radiance data revealed in this study, it is suggested to correct VIMI data if both data need to be used together. The conversion using the model developed in this study based on the Dunhuang site shows that the difference between the VIMI and the AHSI radiance data can be greatly reduced after conversion. A synergistic use of AHSI and calibrated VIMI data can greatly benefit the science community by proving a high-quality observation of the Earth.
  • [1]
    Teillet P M, Barker J L, Markham B L, et al. Radiometric Cross-Calibration of the Landsat-7 ETM+ and Landsat-5 TM Sensors Based on Tandem Data Sets[J]. Remote Sensing of Environment, 2001, 78(1/2):39-54
    [2]
    Xu Hanqiu. Retrieval of the Reflectance and Land Surface Temperature of the Newly-Launched Landsat 8 Satellite[J]. Chinese Journal of Geophysics, 2015, 58(3):741-747(徐涵秋. 新型Landsat8卫星影像的反射率和地表温度反演[J]. 地球物理学报, 2015, 58(3):741-747)
    [3]
    Mishra N, Haque M, Leigh L, et al. Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+)[J]. Remote Sensing, 2014, 6(12):12619-12638
    [4]
    Mancino G, Ferrara A, Padula A, et al. Cross-Comparison between Landsat 8(OLI) and Landsat 7(ETM+) Derived Vegetation Indices in a Mediterranean Environment[J]. Remote Sensing, 2020, 12(2):291
    [5]
    Angal A, Xiong X X, Wu A S, et al. Multitemporal Cross-Calibration of the Terra MODIS and Landsat 7 ETM+ Reflective Solar Bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4):1870-1882
    [6]
    Zhang Aiyin, Zhang Xiaoli. Land Surface Temperature Retrieved from Landsat-8 and Comparison with MODIS Temperature Product[J]. Journal of Beijing Forestry University, 2019, 41(3):1-13(张爱因, 张晓丽. Landsat-8地表温度反演及其与MODIS温度产品的对比分析[J]. 北京林业大学学报, 2019, 41(3):1-13)
    [7]
    Xu H Q, Zhang T J. Assessment of Consistency in Forest-Dominated Vegetation Observations between ASTER and Landsat ETM+ Images in Subtropical Coastal Areas of Southeastern China[J]. Agricultural and Forest Meteorology, 2013, 168:1-9
    [8]
    Xu Hanqiu, Zhang Tiejun, Li Chunhua. Cross Comparison of Thermal Infrared Data between ASTER and Landsat ETM+ Sensors[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8):936-940(徐涵秋, 张铁军, 李春华. ASTER与Landsat ETM~+热红外传感器数据的比较研究[J]. 武汉大学学报·信息科学版, 2011, 36(8):936-940)
    [9]
    Chander G, Coan M J, Scaramuzza P L. Evaluation and Comparison of the IRS-P6 and the Landsat Sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):209-221
    [10]
    Thenkabail P S. Inter-Sensor Relationships between IKONOS and Landsat-7 ETM+ NDVI Data in Three Ecoregions of Africa[J]. International Journal of Remote Sensing, 2004, 25(2):389-408
    [11]
    Chastain R, Housman I, Goldstein J, et al. Empirical Cross Sensor Comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ Top of Atmosphere Spectral Characteristics over the Conterminous United States[J]. Remote Sensing of Environment, 2019, 221:274-285
    [12]
    Barsi J A, Alhammoud B, Czapla-Myers J, et al. Sentinel-2A MSI and Landsat-8 OLI Radiometric Cross Comparison over Desert Sites[J]. European Journal of Remote Sensing, 2018, 51(1):822-837
    [13]
    Quan W T. A Multiplatform Approach Using MODIS Sensors to Cross-Calibrate the HJ-1A/CCD1 Sensors over Aquatic Environments[J]. Journal of the Indian Society of Remote Sensing, 2015, 43(4):687-695
    [14]
    Zhao Kai, Xu Janbo, Zhao Zhizhong, et al. Cross Comparison of HJ-1 A/B CCD and Landsat TM/ETM+ Multispectral Measurements for NDVI, SAVI and EVI Vegetation Index[J]. Remote Sensing Technology and Application, 2013, 28(4):674-680(赵凯, 徐剑波, 赵之重, 等. HJ-1 A/B CCD与Landsat TM/ETM+植被指数的交互比较[J]. 遥感技术与应用, 2013, 28(4):674-680)
    [15]
    Zhang Xuewen, Fu Qiaoyan, Han Qijin, et al. The Field Radiometric Calibration and Validation of ZY-3 Multispectral Sensor[J]. Spectroscopy and Spectral Analysis, 2014, 34(9):2476-2480(张学文, 傅俏燕, 韩启金, 等. 资源三号多光谱传感器场地辐射定标与验证[J]. 光谱学与光谱分析, 2014, 34(9):2476-2480)
    [16]
    Xu Hanqiu, Liu Zhicai, Guo Yanbin. Comparison of NDVI Data between GF-1 PMS1 and ZY-3 MUX Sensors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8):148-154(徐涵秋, 刘智才, 郭燕滨. GF-1 PMS1与ZY-3 MUX传感器NDVI数据的对比分析[J]. 农业工程学报, 2016, 32(8):148-154)
    [17]
    Li J, Feng L, Pang X P, et al. Radiometric Cross Calibration of Gaofen-1 WFV Cameras Using Landsat-8 OLI Images:A Simple Image-Based Method[J]. Remote Sensing, 2016, 8(5):411
    [18]
    Wu Xiaoping, Xu Hanqiu, Jiang Qiaoling. Cross-Comparison of GF-1, GF-2 and Landsat-8 OLI Sensor Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1):150-158(吴晓萍, 徐涵秋, 蒋乔灵. GF-1、GF-2与Landsat-8卫星多光谱数据的交互对比[J]. 武汉大学学报·信息科学版, 2020, 45(1):150-158)
    [19]
    Chen Y P, Sun K M, Li D R, et al. Radiometric Cross-Calibration of GF-4 PMS Sensor Based on Assimilation of Landsat-8 OLI Images[J]. Remote Sensing, 2017, 9(8):811
    [20]
    Gao C X, Liu Y K, Qiu S, et al. Radiometric Cross-Calibration of GF-4/VNIR Sensor with Landsat8/OLI, Sentinel-2/MSI, and Terra/MODIS for Monitoring Its Degradation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:2337-2350
    [21]
    Liu Yinnian, Sun Dexin, Cao Kaiqin, et al. Evaluation of GF-5 AHSI On-Orbit Instrument Radiometric Performance[J]. Journal of Remote Sensing, 2020, 24(4):352-359(刘银年, 孙德新, 曹开钦, 等. 高分五号可见短波红外高光谱相机在轨辐射性能评估[J]. 遥感学报, 2020, 24(4):352-359)
    [22]
    Chander G, Haque M O, Micijevic E, et al. A Procedure for Radiometric Recalibration of Landsat 5 TM Reflective-Band Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1):556-574
    [23]
    Choi T, Xiong X, Chander G, et al. Assessment of the Short-term Radiometric Stability between Terra MODIS and Landsat 7 ETM+ Sensors[C]. 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009
    [24]
    Yan Lei, Gou Zhiyang, Zhao Hongying, et al. In-Flight Spectral Calibration of UAV Hyperspectral Imager Based on Radiance Matching[J]. Journal of Infrared and Millimeter Waves, 2012, 31(6):517-522(晏磊, 勾志阳, 赵红颖, 等. 基于辐亮度匹配的无人机载成像光谱仪外场光谱定标研究[J]. 红外与毫米波学报, 2012, 31(6):517-522)
    [25]
    Chander G, Meyer D J, Helder D L. Cross Calibration of the Landsat-7 ETM+ and EO-1 ALI Sensor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(12):2821-2831
    [26]
    Chen W, Zhou G. Comparison of Satellite Measured Temperature Using Terra ASTER and Landsat ETM+ Data[J]. IEEE International Geoscience and Remote Sensing Symposium, 2004, 3:1723-1726
    [27]
    Meyer D J, Chander G. The Effect of Variations in Relative Spectral Response on the Retrieval of Land Surface Parameters from Multiple Sources of Remotely Sensed Imagery[C]. 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007
    [28]
    Malila W A, Meyers T J. Tasseled-cap Transformation of JERS-1 OPS Multispectral Data-an Initial Version[C], Geoscience and Remote Sensing Symposium (IGARSS 1995), Firenze, Italy, 1995
    [29]
    Liu Q Y, Yu T, Gao H L. Radiometric Cross-Calibration of GF-1 PMS Sensor with a New BRDF Model[J]. Remote Sensing, 2019, 11(6):707
    [30]
    Li Juan, Feng Lian, Pang Xiaoping. Comparison of the Cross-Calibration Methods between Image-Based and RTMBRDF for GF-1 Images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7):882-890(李娟, 冯炼, 庞小平. 针对GF-1遥感影像的基于影像与基于辐射传输模型的两种交叉定标方法比较[J]. 测绘学报, 2017, 46(7):882-890)
    [31]
    Zhang H K, Roy D P, Yan L, et al. Characterization of Sentinel-2A and Landsat-8 Top of Atmosphere, Surface, and Nadir BRDF Adjusted Reflectance and NDVI Differences[J]. Remote Sensing of Environment, 2018, 215:482-494
    [32]
    Zhao Y G, Ma L L, Li C R, et al. Radiometric Cross-Calibration of Landsat-8/OLI and GF-1/PMS Sensors Using an Instrumented Sand Site[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10):3822-3829
  • Related Articles

    [1]HUANG Bohua, YANG Bohang, LI Minggui, GUO Zhongkai, MAO Jianyou, WANG Hong. An Improved Method for MAD Gross Error Detection of Clock Error[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 747-752. DOI: 10.13203/j.whugis20190430
    [2]WANG Leyang, GU Wangwang, ZHAO Xiong, XU Guangyu, GAO Hua. Determination of Relative Weight Ratio of Joint Inversion Using Bias-Corrected Variance Component Estimation Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 508-516. DOI: 10.13203/j.whugis20200216
    [3]IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
    [4]ZHAO Jianhu, WU Jingwen, ZHAO Xinglei, ZHOU Fengnian. A Correction Model for Depth Bias in Airborne LiDAR Bathymetry Systems[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 328-333. DOI: 10.13203/j.whugis20160481
    [5]LU Tieding, YANG Yuanxi, ZHOU Shijian. Comparative Analysis of MDB for Different Outliers Detection Methods[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 185-192, 199. DOI: 10.13203/j.whugis20140330
    [6]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [7]SUN Wenchuan, BAO Jingyang, JIN Shaohua, XIAO Fumin, ZHANG Zhiwei. A Re-calibration Method for Roll Bias of Multi-beam Sounding System[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1440-1444. DOI: 10.13203/j.whugis20140481
    [8]ZOU Qin, LI Qingquan. Target-points MST for Pavement Crack Detection[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 71-75.
    [9]HUANG Xianyuan, ZHAI Guojun, SUI Lifen, HUANG Motao. Application of Least Square Support Vector Machine to Detecting Outliers of Multi-beam Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1188-1191.
    [10]XU Caijun, WANG Jianglin. Linear Minimum Mean Square Error Estimation for Wet Delay Correction in SAR Interferogram[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 757-760.

Catalog

    Article views (1713) PDF downloads (154) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return