WANG Yangyang, WANG Zhongyuan, HU Chao, YU Zhihao. Vehicle Attitude Estimation Model Using Optimized Time-Differenced Carrier Phase[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1359-1365. DOI: 10.13203/j.whugis20200571
Citation: WANG Yangyang, WANG Zhongyuan, HU Chao, YU Zhihao. Vehicle Attitude Estimation Model Using Optimized Time-Differenced Carrier Phase[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1359-1365. DOI: 10.13203/j.whugis20200571

Vehicle Attitude Estimation Model Using Optimized Time-Differenced Carrier Phase

More Information
  • Received Date: October 27, 2021
  • Available Online: August 02, 2023
  • Published Date: August 04, 2023
  •   Objectives  To solve the problems of high cost and high complexity of traditional estimation method of the moving vehicles attitude angle, an innovative vehicle heading and pitch estimation model based on optimized time-differenced carrier phase is proposed.
      Methods  First, we use observation data of one global navigation satellite system receiver and time-differenced carrier phase algorithm with a low-complexity to obtain accurate vehicle displacement vector, further estimate vehicle heading and pitch. In order to improve the estimation efficiency, we optimize the traditional time-differenced carrier phase algorithm.
      Results  Static and dynamic tests results show that the optimized time-differenced carrier phase is more efficient than the general carrier phase time-difference, and the processing time can be saved by about 40%.The proposed heading and pitch estimation model can provide accurate values of heading and pitch, whose root mean square error is less than 0.2° and maximum error is less than 1.5°.The accuracy of the model will not be affected by the accumulation of errors within one hour.
      Conclusions  This proposed model uses only one receiver to obtain heading and pitch of moving vehicles, which has the advantages of high accuracy, low cost, low complexity and high efficiency.
  • [1]
    魏小峰, 耿则勋, 娄博, 等. 空间目标三维姿态估计方法[J]. 武汉大学学报(信息科学版), 2015, 40(1): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201501016.htm

    Wei Xiaofeng, Geng Zexun, Lou Bo, et al. A 3D Pose Estimation Method for Space Object[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201501016.htm
    [2]
    李田, 鲁寨军, 刘应龙, 等. 利用摄影测量在线检测轨道车辆车体运行姿态[J]. 武汉大学学报(信息科学版), 2018, 43(7): 1015-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201807007.htm

    Li Tian, Lu Zhaijun, Liu Yinglong, et al. On-line Detection of Car-Body Running Attitude for Railway Vehicle Based on Photogrammetry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1015-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201807007.htm
    [3]
    兰建潮. 工程车辆的姿态检测研究[D]. 太原: 太原科技大学, 2018.

    Lan Jianchao. Research on Attitude Detection of Construction Vehicles[D]. Taiyuan: Taiyuan University of Science and Technology, 2018.
    [4]
    牛靖博. 车辆姿态检测及其语义地图应用[D]. 成都: 电子科技大学, 2018.

    Niu Jingbo. Vehicle Pose Detection and Its Semantic Map Application[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
    [5]
    Raskaliyev A, Patel S H, Sobh T M, et al. GNSS-based Attitude Determination Techniques—A Comprehensive Literature Survey[J]. IEEE Access, 2020, 8: 24873-24886. doi: 10.1109/ACCESS.2020.2970083
    [6]
    Alban S. Design and Performance of a Robust GPS/INS Attitude System for Automobile Applications[D]. Stanford: Stanford University, 2004.
    [7]
    Sun R, Cheng Q, Wang J H. Precise Vehicle Dynamic Heading and Pitch Angle Estimation Using Time-Differenced Measurements from a Single GNSS Antenna[J]. GPS Solutions, 2020, 24(3): 84. doi: 10.1007/s10291-020-01000-2
    [8]
    Evans A G. Roll, Pitch, and Yaw Determination Using a Global Positioning System Receiver and an Antenna Periodically Moving in a Plane[J]. Marine Geodesy, 1986, 10(1): 43-52. doi: 10.1080/01490418609388010
    [9]
    Groves P D, Handley R J, Parker S T. Vehicle Heading Determination Using Only Single-Antenna GPS and a Single Gyro[C]//The 22nd International Technical Meeting of the Satellite Division of The Institute of Navigation, Savannah, USA, 2009
    [10]
    Bahder T B. Attitude Determination from Single-Antenna Carrier-Phase Measurements[J]. Journal of Applied Physics, 2002, 91(7): 4677-4684. doi: 10.1063/1.1448871
    [11]
    No H, Cho A, Han Y, et al. Attitude Determination Method Using Single-Antenna GPS Gyro and Magnetometer [C]//The Asia-Pacific International Symposium on Aerospace Technology (APISAT 2012), Jeju, Korea, 2012.
    [12]
    宁津生, 王华, 程鹏飞, 等. 2000国家大地坐标系框架体系建设及其进展[J]. 武汉大学学报(信息科学版), 2015, 40(5): 569-573. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201505001.htm

    Ning Jinsheng, Wang Hua, Cheng Pengfei, et al. System Construction and Its Progress of China Geodetic Coordinate System 2000[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 569-573. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201505001.htm
    [13]
    尹潇, 柴洪洲, 向明志, 等. 历元间载波相位差分的GPS/BDS精密单点测速算法[J]. 中国惯性技术学报, 2020, 28(2): 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ202002014.htm

    Yin Xiao, Chai Hongzhou, Xiang Mingzhi, et al. GPS/BDS Precise Stand Alone Velocity Determination Using Time-Differenced Carrier Phases[J]. Journal of Chinese Inertial Technology, 2020, 28(2): 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ202002014.htm
    [14]
    王星星, 涂锐, 洪菊, 等. 基于历元差分原理的BDS测速模型及性能分析[J]. 大地测量与地球动力学, 2019, 39(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201901002.htm

    Wang Xingxing, Tu Rui, Hong Ju, et al. BDS Velocity Estimation and Performance Analysis Based on Time-Difference Model[J]. Journal of Geodesy and Geodynamics, 2019, 39(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201901002.htm
    [15]
    耿涛, 丁志辉, 谢新, 等. 基于载波相位差分的多频多GNSS测速精度评估[J]. 武汉大学学报(信息科学版), 2023, 48(2): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202302003.htm

    Geng Tao, Ding Zhihui, Xie Xin, et al. Accuracy Assessment of Multi-frequency and Multi-GNSS Velocity Estimation with Time Differenced Carrier Phase Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202302003.htm
    [16]
    Van Graas F, Soloviev A. Precise Velocity Estimation Using a Stand-Alone GPS Receiver[J]. Navigation, 2004, 51(4): 283-292.
    [17]
    易重海, 陈源军. 顾及历元间坐标差信息的GPS模糊度快速固定改进方法[J]. 武汉大学学报(信息科学版), 2019, 44(4): 489-494. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201904003.htm

    Yi Zhonghai, Chen Yuanjun. An Improved GPS Fast Ambiguity Resolution Algorithm with Epoch-Differenced Coordinate Information[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 489-494. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201904003.htm
    [18]
    Ding W D, Wang J L. Precise Velocity Estimation with a Stand-Alone GPS Receiver[J]. Journal of Navigation, 2011, 64(2): 311-325.
  • Related Articles

    [1]GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458
    [2]SUN Leyuan, YANG Jun, GUO Xiye, HUANG Wende. Frequency Performance Evaluation of BeiDou-3 Satellite Atomic Clocks[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200486
    [3]WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058
    [4]AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091
    [5]LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537
    [6]WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806
    [7]LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542
    [8]HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827
    [9]MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186.
    [10]GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221.
  • Cited by

    Periodical cited type(10)

    1. 黄观文,曹钰,谭粤,谢威. GNSS星载原子钟在轨性能评估技术进展. 测绘地理信息. 2024(01): 20-28 .
    2. 蒋春华,朱美珍,薛慧杰,刘广盛. 基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报. 大地测量与地球动力学. 2024(03): 257-262 .
    3. 艾孝军,孙大伟,贾小林,郭栋,彭腾. GNSS星载原子钟性能评估与噪声分析模型算法研究. 无线电工程. 2023(05): 1041-1051 .
    4. 李方能,梁益丰,许江宁,吴苗. BDS/GPS新型铷原子钟长期特性分析. 中国惯性技术学报. 2023(05): 452-461 .
    5. 张润哲,刘雪娇,王全喜. 基于方位导引的无人僚机着舰进近引导技术研究. 现代导航. 2023(06): 416-421 .
    6. 龚明杰. GPS与GLONASS多频组合伪距单点定位精度分析. 测绘与空间地理信息. 2022(02): 115-117+122 .
    7. 樊礼谦,焦文海,蔡洪亮,周巍,徐颖,周舒涵. 北斗三号卫星钟长期稳定性分析. 导航定位学报. 2022(04): 11-19 .
    8. 李特,张为成,王建敏,李秀海. 基于不同评价指标的北斗星载原子钟特性分析. 黑龙江工程学院学报. 2022(04): 1-7 .
    9. 伏军胜,贾小林,刘家龙,许瑾,贺延伟,张奋. BDS-3卫星与其他GNSS系统卫星原子钟性能分析. 真空与低温. 2022(05): 615-622 .
    10. 齐艳丽. 北斗星载原子钟频率稳定度评估. 科技视界. 2022(29): 83-85 .

    Other cited types(11)

Catalog

    Article views (926) PDF downloads (119) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return