WANG Yangyang, WANG Zhongyuan, HU Chao, YU Zhihao. Vehicle Attitude Estimation Model Using Optimized Time-Differenced Carrier Phase[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1359-1365. DOI: 10.13203/j.whugis20200571
Citation: WANG Yangyang, WANG Zhongyuan, HU Chao, YU Zhihao. Vehicle Attitude Estimation Model Using Optimized Time-Differenced Carrier Phase[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1359-1365. DOI: 10.13203/j.whugis20200571

Vehicle Attitude Estimation Model Using Optimized Time-Differenced Carrier Phase

More Information
  • Received Date: October 27, 2021
  • Available Online: August 02, 2023
  • Published Date: August 04, 2023
  •   Objectives  To solve the problems of high cost and high complexity of traditional estimation method of the moving vehicles attitude angle, an innovative vehicle heading and pitch estimation model based on optimized time-differenced carrier phase is proposed.
      Methods  First, we use observation data of one global navigation satellite system receiver and time-differenced carrier phase algorithm with a low-complexity to obtain accurate vehicle displacement vector, further estimate vehicle heading and pitch. In order to improve the estimation efficiency, we optimize the traditional time-differenced carrier phase algorithm.
      Results  Static and dynamic tests results show that the optimized time-differenced carrier phase is more efficient than the general carrier phase time-difference, and the processing time can be saved by about 40%.The proposed heading and pitch estimation model can provide accurate values of heading and pitch, whose root mean square error is less than 0.2° and maximum error is less than 1.5°.The accuracy of the model will not be affected by the accumulation of errors within one hour.
      Conclusions  This proposed model uses only one receiver to obtain heading and pitch of moving vehicles, which has the advantages of high accuracy, low cost, low complexity and high efficiency.
  • [1]
    魏小峰, 耿则勋, 娄博, 等. 空间目标三维姿态估计方法[J]. 武汉大学学报(信息科学版), 2015, 40(1): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201501016.htm

    Wei Xiaofeng, Geng Zexun, Lou Bo, et al. A 3D Pose Estimation Method for Space Object[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201501016.htm
    [2]
    李田, 鲁寨军, 刘应龙, 等. 利用摄影测量在线检测轨道车辆车体运行姿态[J]. 武汉大学学报(信息科学版), 2018, 43(7): 1015-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201807007.htm

    Li Tian, Lu Zhaijun, Liu Yinglong, et al. On-line Detection of Car-Body Running Attitude for Railway Vehicle Based on Photogrammetry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1015-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201807007.htm
    [3]
    兰建潮. 工程车辆的姿态检测研究[D]. 太原: 太原科技大学, 2018.

    Lan Jianchao. Research on Attitude Detection of Construction Vehicles[D]. Taiyuan: Taiyuan University of Science and Technology, 2018.
    [4]
    牛靖博. 车辆姿态检测及其语义地图应用[D]. 成都: 电子科技大学, 2018.

    Niu Jingbo. Vehicle Pose Detection and Its Semantic Map Application[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
    [5]
    Raskaliyev A, Patel S H, Sobh T M, et al. GNSS-based Attitude Determination Techniques—A Comprehensive Literature Survey[J]. IEEE Access, 2020, 8: 24873-24886. doi: 10.1109/ACCESS.2020.2970083
    [6]
    Alban S. Design and Performance of a Robust GPS/INS Attitude System for Automobile Applications[D]. Stanford: Stanford University, 2004.
    [7]
    Sun R, Cheng Q, Wang J H. Precise Vehicle Dynamic Heading and Pitch Angle Estimation Using Time-Differenced Measurements from a Single GNSS Antenna[J]. GPS Solutions, 2020, 24(3): 84. doi: 10.1007/s10291-020-01000-2
    [8]
    Evans A G. Roll, Pitch, and Yaw Determination Using a Global Positioning System Receiver and an Antenna Periodically Moving in a Plane[J]. Marine Geodesy, 1986, 10(1): 43-52. doi: 10.1080/01490418609388010
    [9]
    Groves P D, Handley R J, Parker S T. Vehicle Heading Determination Using Only Single-Antenna GPS and a Single Gyro[C]//The 22nd International Technical Meeting of the Satellite Division of The Institute of Navigation, Savannah, USA, 2009
    [10]
    Bahder T B. Attitude Determination from Single-Antenna Carrier-Phase Measurements[J]. Journal of Applied Physics, 2002, 91(7): 4677-4684. doi: 10.1063/1.1448871
    [11]
    No H, Cho A, Han Y, et al. Attitude Determination Method Using Single-Antenna GPS Gyro and Magnetometer [C]//The Asia-Pacific International Symposium on Aerospace Technology (APISAT 2012), Jeju, Korea, 2012.
    [12]
    宁津生, 王华, 程鹏飞, 等. 2000国家大地坐标系框架体系建设及其进展[J]. 武汉大学学报(信息科学版), 2015, 40(5): 569-573. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201505001.htm

    Ning Jinsheng, Wang Hua, Cheng Pengfei, et al. System Construction and Its Progress of China Geodetic Coordinate System 2000[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 569-573. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201505001.htm
    [13]
    尹潇, 柴洪洲, 向明志, 等. 历元间载波相位差分的GPS/BDS精密单点测速算法[J]. 中国惯性技术学报, 2020, 28(2): 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ202002014.htm

    Yin Xiao, Chai Hongzhou, Xiang Mingzhi, et al. GPS/BDS Precise Stand Alone Velocity Determination Using Time-Differenced Carrier Phases[J]. Journal of Chinese Inertial Technology, 2020, 28(2): 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ202002014.htm
    [14]
    王星星, 涂锐, 洪菊, 等. 基于历元差分原理的BDS测速模型及性能分析[J]. 大地测量与地球动力学, 2019, 39(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201901002.htm

    Wang Xingxing, Tu Rui, Hong Ju, et al. BDS Velocity Estimation and Performance Analysis Based on Time-Difference Model[J]. Journal of Geodesy and Geodynamics, 2019, 39(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201901002.htm
    [15]
    耿涛, 丁志辉, 谢新, 等. 基于载波相位差分的多频多GNSS测速精度评估[J]. 武汉大学学报(信息科学版), 2023, 48(2): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202302003.htm

    Geng Tao, Ding Zhihui, Xie Xin, et al. Accuracy Assessment of Multi-frequency and Multi-GNSS Velocity Estimation with Time Differenced Carrier Phase Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202302003.htm
    [16]
    Van Graas F, Soloviev A. Precise Velocity Estimation Using a Stand-Alone GPS Receiver[J]. Navigation, 2004, 51(4): 283-292.
    [17]
    易重海, 陈源军. 顾及历元间坐标差信息的GPS模糊度快速固定改进方法[J]. 武汉大学学报(信息科学版), 2019, 44(4): 489-494. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201904003.htm

    Yi Zhonghai, Chen Yuanjun. An Improved GPS Fast Ambiguity Resolution Algorithm with Epoch-Differenced Coordinate Information[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 489-494. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201904003.htm
    [18]
    Ding W D, Wang J L. Precise Velocity Estimation with a Stand-Alone GPS Receiver[J]. Journal of Navigation, 2011, 64(2): 311-325.
  • Related Articles

    [1]LONG En, LÜ Shouye, QU Xiaofei, MENG Gang, LAI Guangling, YANG Yuke. Height Inversion Model of Oil Tank Using Satellite Imagery with Same Name Arc Distance[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 411-418. DOI: 10.13203/j.whugis20210239
    [2]LÜ Pinji, LI Zhengyuan, SUN Lingli, LIN Jun, TANG Lei, NI Yipeng. Analysis of Impact of the Tonga Volcanic Eruption in 2022 on the Strain Observation of Chinese Mainland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 927-933. DOI: 10.13203/j.whugis20220174
    [3]LEI Xiangxu, SANG Jizhang, LI Zhenwei, CHEN Junyu, DU Jianli, HE Donglei. Association of Very-Short-Arc Angles Data for LEO Space Objects[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1526-1532. DOI: 10.13203/j.whugis20180386
    [4]LOU Yidong, YAO Xiuguang, LIU Yang, ZHENG Fu. Impact of Ambiguity Resolution and Arc Length on Regional Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 249-254. DOI: 10.13203/j.whugis20140201
    [5]LIU Xiaoxia, JIANG Zaisen, WU Yanqiang. The Applicability of Kriging Interpolation Method in GPSVelocity Gridding and Strain Calculating[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 457-461. DOI: 10.13203/j.whugis20120086
    [6]WU Yanqiang, JIANG Zaisen, YANG Guohua, FANG Ying. Application and Method of GPS Strain Calculating in Whole Mode Using Multi-Surface Function[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1085-1089.
    [7]DING Kaihua, XU Cajjun. Current Crustal Strain Field in the Sichuan-Yunnan Area by Joint Inversion of GPS and Seismic Moment Tensor[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 265-268.
    [8]ZHU Xinhui, SUN Fuping, QIN Yong. Establishment of Plate Motion Model by the Integrated Data of GPS and VLBI[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 604-608.
    [9]DU Ruilin, QIAO Xuejun, YANG Shaomin, WANG Qi. Results of the Crustal Deformation by GPS Survey and Horizontal Strain Rate Fields in the Three Gorges Area[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 768-771.
    [10]Zhang Zuxun, Bao Xiuzhi, Cao Hui. Arc Spline and Arclet Processing[J]. Geomatics and Information Science of Wuhan University, 1994, 19(3): 189-193.
  • Cited by

    Periodical cited type(5)

    1. 黄少华,万永革,冯淦,李枭,关兆萱. 2022年9月17日中国台湾地震序列的触发机制及其动力学成因. 地质力学学报. 2023(05): 674-684 .
    2. 李之诺,卢佳遇,高锐,陈致同. 斜向聚合及弧后伸展作用对台湾北部-琉球地区的构造影响——砂箱模型实验的启示. 地球学报. 2022(05): 609-615 .
    3. 李建涛,刚慧龙. 基于ITRF14框架的URCORS坐标分析. 工程勘察. 2022(10): 62-66 .
    4. 高源,瞿伟,张勤,王庆良,郝明. GNSS揭示的汾渭盆地及周缘现今地壳运动与应变差异. 武汉大学学报(信息科学版). 2021(07): 1063-1070+1113 .
    5. 徐良叶,邵德盛,吴学群,牛甜. 最小二乘配置的云南区域形变与应变特征研究. 测绘科学. 2021(12): 16-23+74 .

    Other cited types(4)

Catalog

    Article views (932) PDF downloads (119) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return