JI Song, ZHANG Yongsheng, YANG Zhe, DAI Chenguang. MVLL Match Method for Multi-baseline Stereo Imagery Based on Semi-global Constraint[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 155-164. DOI: 10.13203/j.whugis20200478
Citation: JI Song, ZHANG Yongsheng, YANG Zhe, DAI Chenguang. MVLL Match Method for Multi-baseline Stereo Imagery Based on Semi-global Constraint[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 155-164. DOI: 10.13203/j.whugis20200478

MVLL Match Method for Multi-baseline Stereo Imagery Based on Semi-global Constraint

More Information
  • Received Date: April 08, 2022
  • Available Online: May 12, 2022
  • Published Date: January 04, 2023
  •   Objectives  Multi-view vertical line locus (MVLL) is a practical multi-baseline stereo image matching method, which can match and obtain the best elevation of ground points with the ground plumb line as geometric constraint. Aiming at solving the problem of independent ground point matching and lacking integrity constraint in MVLL matching method, the local smooth property of object space is applied to the matching process, and the MVLL matching method for multi-baseline stereo imagery based on semi-global constraint is proposed.
      Methods  Firstly, the accurate elevation of ground points is searched along the ground plumb line, which can be equivalent to the accurate parallax search along the epipolar image space. Secondly, the MVLL matching method is used to calculate the equivalent image matching measure of ground points on multiple images. Then, the semi⁃global matching (SGM) method is used to aggregate and analyze the matching measure through multi-path, and the equivalent disparity map under the local smooth constraint of the object space is obtained. Finally, the equivalent parallax map is converted to matching elevation of the ground points. And through multi-resolution matching of the multi-baseline stereo imagery, MVLL matching is realized under the overall optimal conditions and greatly integrated with SGM matching method.
      Results  The effectiveness of the proposed method is verified by experiments and analysis of various terrain features, including uneven surface feature, similar texture feature and occlusive feature. Comparative experiments are also conducted on local image areas.
      Conclusions  The experimental results show that the proposed method can optimize the object space matching measure of different terrain features, obtain more reliable matching results, and have higher image matching performance.
  • [1]
    纪松. 多视匹配策略与优化方法研究[D]. 郑州: 信息工程大学, 2012.

    Ji Song. Study on the Strategy and Improvement Method of Multi-view Image Matching Technology[D]. Zhengzhou: Information Engineering University, 2012.
    [2]
    Rothermel M, Wenzel K, Fritsch D, et al. SURE: Photogrammetric Surface Reconstruction from Ima-gery[C]// Proceedings LC3D Workshop, Berlin, Germany, 2012.
    [3]
    Gruen A. Development and Status of Image Matching in Photogrammetry[J]. The Photogrammetric Record, 2012, 27(137): 36-57. doi: 10.1111/j.1477-9730.2011.00671.x
    [4]
    Seitz S M, Curless B, Diebel J, et al. A Comparison and Evaluation of Multi-view Stereo Reconstruction Algorithms[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, 2006.
    [5]
    Zeglazi O, Rziza M, Amine A, et al. A Hierarchical Stereo Matching Algorithm Based on Adaptive Support Region Aggregation Method[J]. Pattern Recognition Letters, 2018, 112: 205-211. doi: 10.1016/j.patrec.2018.07.020
    [6]
    Zhang L. Automatic Digital Surface Model (DSM) Generation from Linear Array Images[D]. Zurich: Swiss Federal Institute of Technology, 2005.
    [7]
    纪松, 范大昭, 张永生, 等. 多视匹配MVLL算法及其在ADS40线阵影像中的运用[J]. 武汉大学学报(信息科学版), 2009, 34(1): 28-31. http://ch.whu.edu.cn/article/id/1127

    Ji Song, Fan Dazhao, Zhang Yongsheng, et al. MVLL Multi-image Matching Model and Its Application in ADS40 Linear Array Images[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 28-31. http://ch.whu.edu.cn/article/id/1127
    [8]
    Yasutaka F, Jean P. Accurate, Dense, and Robust Multi-view Stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1362-1376. doi: 10.1109/TPAMI.2009.161
    [9]
    Rupnik E, Daakir M, Deseilligny M. MicMac - A Free, Open-source Solution for Photogrammetry[J]. Open Geospatial Data, Software and Standards, 2017, 2: 1-9. doi: 10.1186/s40965-017-0014-7
    [10]
    张力, 张继贤. 基于多基线影像匹配的高分辨率遥感影像DEM的自动生成[J]. 武汉大学学报(信息科学版), 2008, 33(9): 943-946. http://ch.whu.edu.cn/article/id/1689

    Zhang Li, Zhang Jixian. Automatic DEM Generation from High-Resolution Satellite Imagery Based on Multiple-Baseline Image Matching[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 943-946. http://ch.whu.edu.cn/article/id/1689
    [11]
    王竞雪, 朱庆, 王伟玺. 多匹配基元集成的多视影像密集匹配方法[J]. 测绘学报, 2013, 42(5): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201305011.htm

    Wang Jingxue, Zhu Qing, Wang Weixi. A Dense Matching Algorithm of Multi-view Image Based on the Integrated Multiple Matching Primitives[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201305011.htm
    [12]
    Lowe D G. Distinctive Image Features Form Scale-Invariant Key Points[J]. International Journal of Compute Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [13]
    纪艳华, 许殊, 陈勃. 边缘约束的航摄立体影像密集匹配方法[J]. 测绘地理信息, 2022, 47(2): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202202020.htm

    Ji Yanhua, Xu Shu, Chen Bo. Edge-Constrained Dense Matching Method for Aerial Stereo Images[J]. Journal of Geomatics, 2022, 47(2): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202202020.htm
    [14]
    Hirschmuller H. Accurate and Efficient Stereo Processing by Semi-global Matching and Mutual Information[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005.
    [15]
    Hirschmuller H. Stereo Processing by Semi-global Matching and Mutual Information[J]. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 328-341.
    [16]
    张丽. 遥感影像协同处理体系及摄影测量应用研究[D]. 郑州: 信息工程大学, 2015.

    Zhang Li. Study on Architecture of Cooperative Processing for Remote Sensing Images and Its Application on Photogrammetry[D]. Zhengzhou: Information Engineering University, 2015.
  • Related Articles

    [1]WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094
    [2]FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036
    [3]DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842
    [4]FU Zhongliang, LIU Siyuan. MR-tree with Voronoi Diagrams for Parallel Spatial Queries[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1490-1494.
    [5]HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49.
    [6]ZHANG Lu, GAO Zhihong, LIAO Mingsheng, LI Xinyan. Estimating Urban Impervious Surface Percentage with Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1212-1216.
    [7]HAN Tao, XU Xiaotao, XIE Yaowen. Automated Construction and Classification of Decision Tree Classifier Based on Single-Temporal MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 191-194.
    [8]LIAO Mingsheng, JIANG Liming, LIN Hui, YANG Limin. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1099-1102.
    [9]YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289.
    [10]GUO Jing, LIU Guangjun, DONG Xurong, GUO Lei. 2-Level R-tree Spatial Index Based on Spatial Grids and Hilbert R-tree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1084-1088.
  • Cited by

    Periodical cited type(13)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 何毅,姚圣,陈毅,闫浩文,张立峰. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版). 2025(03): 483-496 .
    3. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    4. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    5. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    6. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    9. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    10. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    11. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    12. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    13. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return