Citation: | TAN Han, WU Jiaqi. Accuracy Assessment for LEO Precise Orbit Determination with Single-Difference Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1460-1469. DOI: 10.13203/j.whugis20200385 |
[1] |
Bezděk A, Sebera J, Klokočník J, et al. Gravity Field Models from Kinematic Orbits of CHAMP, GRACE and GOCE Satellites[J]. Advances in Space Research, 2014, 53(3): 412-429 doi: 10.1016/j.asr.2013.11.031
|
[2] |
Beckley B D, Lemoine F G, Luthcke S B, et al. A Reassessment of Global and Regional Mean Sea Level Trends from TOPEX and Jason-1 Altimetry Based on Revised Reference Frame and Orbits[J]. Geophysical Research Letters, 2007, 34(14): L14608 doi: 10.1029/2007GL030002
|
[3] |
Wickert J, Reigber C, Beyerle G, et al. Atmosphere Sounding by GPS Radio Occultation: First Results from CHAMP[J]. Geophysical Research Letters, 2001, 28(17): 3263-3266 doi: 10.1029/2001GL013117
|
[4] |
Cerri L, Berthias J P, Bertiger W I, et al. Precision Orbit Determination Standards for the Jason Series of Altimeter Missions[J]. Marine Geodesy, 2010, 33(sup1): 379-418 doi: 10.1080/01490419.2010.488966
|
[5] |
Kang Z G, Tapley B, Bettadpur S, et al. Precise Orbit Determination for the GRACE Mission Using only GPS Data[J]. Journal of Geodesy, 2006, 80(6): 322-331 doi: 10.1007/s00190-006-0073-5
|
[6] |
张小红, 李星星. 非差模糊度整数固定解PPP新方法及实验[J]. 武汉大学学报·信息科学版, 2010, 35(6): 657-660 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006006.htm
Zhang Xiaohong, Li Xingxing. A New Method for Zero-Differenced Interger Ambiguity Resolution and Its Application to PPP[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 657-660 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006006.htm
|
[7] |
Laurichesse D, Mercier F, Berthias J P, et al. Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination[J]. Navigation, 2009, 56(2): 135-149 doi: 10.1002/j.2161-4296.2009.tb01750.x
|
[8] |
Collins P, Bisnath S, Lahaye F, et al. Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing[J]. Navigation, 2010, 57(2): 123-135 doi: 10.1002/j.2161-4296.2010.tb01772.x
|
[9] |
Geng J H, Meng X L, Dodson A H, et al. Integer Ambiguity Resolution in Precise Point Positioning: Method Comparison[J]. Journal of Geodesy, 2010, 84(9): 569-581 doi: 10.1007/s00190-010-0399-x
|
[10] |
Shi J B, Gao Y. A Comparison of Three PPP Integer Ambiguity Resolution Methods[J]. GPS Solutions, 2014, 18(4): 519-528 doi: 10.1007/s10291-013-0348-2
|
[11] |
Loyer S, Perosanz F, Mercier F, et al. Zero‐Difference GPS Ambiguity Resolution at CNES-CLS IGS Analysis Center[J]. Journal of Geodesy, 2012, 86(11): 991-1003 doi: 10.1007/s00190-012-0559-2
|
[12] |
Banville S, Geng J H, Loyer S, et al. On the Interoperability of IGS Products for Precise Point Positioning with Ambiguity Resolution[J]. Journal of Geodesy, 2020, 94(1), DOI: 10.1007/s00190-019-01335-w
|
[13] |
Hu J H, Zhang X H, Li P, et al. Multi-GNSS Fractional Cycle Bias Products Generation for GNSS Ambiguity‐Fixed PPP at Wuhan University[J]. GPS Solutions, 2020, 24(1), DOI: 10.1007/s10291-019-0929-9
|
[14] |
张小红, 李盼, 左翔. 固定模糊度的精密单点定位几何定轨方法及结果分析[J]. 武汉大学学报·信息科学版, 2013, 38(9): 1009-1013 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201309002.htm
Zhang Xiaohong, Li Pan, Zuo Xiang. Kinematic Precise Orbit Determination Based on Ambiguity-Fixed PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1009-1013 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201309002.htm
|
[15] |
Montenbruck O, Hackel S, Ijssel J, et al. Reduced Dynamic and Kinematic Precise Orbit Determination for the Swarm Mission from 4 Years of GPS Tracking[J]. GPS Solutions, 2018, 22(3), DOI: 10.1007/s10291-018-0746-6
|
[16] |
Montenbruck O, Hackel S, Jäggi A. Precise Orbit Determination of the Sentinel-3A Altimetry Satellite Using Ambiguity-Fixed GPS Carrier Phase Observations[J]. Journal of Geodesy, 2018, 92(7): 711-726 doi: 10.1007/s00190-017-1090-2
|
[17] |
张强. 采用GPS与北斗的低轨卫星及其编队精密定轨关键技术研究[D]. 武汉: 武汉大学, 2018
Zhang Qiang. Research on the Key Technologies of Precise Orbit Determination for Low Earth Orbit Satellites and Their Formation Using GPS and BDS[D]. Wuhan: Wuhan University, 2018
|
[18] |
Allende-Alba G, Montenbruck O, Hackel S, et al. Relative Positioning of Formation-Flying Spacecraft Using Single-Receiver GPS Carrier Phase Ambiguity Fixing[J]. GPS Solutions, 2018, 22(3), DOI: 10.1007/s10291-018-0734-x
|
[19] |
Chen H, Jiang W P, Ge M R, et al. An Enhanced Strategy for GNSS Data Processing of Massive Networks[J]. Journal of Geodesy, 2014, 88(9): 857-867 doi: 10.1007/s00190-014-0727-7
|
[20] |
Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399 doi: 10.1007/s00190-007-0187-4
|
[21] |
Melbourne W. The Case for Ranging in GPS-Based Geodetic Systems[C]//The 1st International Symposium on Precise Positioning with the Global Positioning Systems, Rockville, USA, 1985
|
[22] |
Wübbena G. Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements[C] //The 1st International Symposium on Precise Positioning with the Global Positioning Systems, Rockville, USA, 1985
|
[23] |
Jäggi A, Dach R, Montenbruck O, et al. Phase Center Modeling for LEO GPS Receiver Antennas and Its Impact on Precise Orbit Determination[J]. Journal of Geodesy, 2009, 83(12), DOI: 10.1007/s00190-009-0333-2
|
[24] |
Dong U D N, Bock Y. Global Positioning System Network Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California[J]. Journal of Geophysical Research, 1989, 94(B4): 3949-3966 doi: 10.1029/JB094iB04p03949
|
[25] |
Wu J T, Wu S C, Hajj G A, et al. Effects of Antenna Orientation on GPS Carrier Phase[J]. Advances in the Astronautical Sciences, 1992, 76(2): 1647-1660
|
[26] |
Lyard F, Lefevre F, Letellier T, et al. Modelling the Global Ocean Tides: Modern Insights from FES2004[J]. Ocean Dynamics, 2006, 56(5): 394-415
|
[27] |
Priestley K J, Smith G L, Thomas S, et al. Radiometric performance of the CERES Earth Radiation Budget Climate Record Sensors on the EOS Aqua and Terra Spacecraft[C]//Optical Engineering+ Applications, San Diego, USA, 2007
|
[28] |
Bertiger W, Desai S D, Haines B, et al. Single Receiver Phase Ambiguity Resolution with GPS Data[J]. Journal of Geodesy, 2010, 84(5): 327-337 doi: 10.1007/s00190-010-0371-9
|
[29] |
Pearlman M R, Degnan J J, Bosworth J M. The International Laser Ranging Service[J]. Advances in Space Research, 2002, 30(2): 135-143 doi: 10.1016/S0273-1177(02)00277-6
|
[30] |
Švehla D, Rothacher M. Kinematic Precise Orbit Determination for Gravity Field Determination[M]//International Association of Geodesy Symposia. Berlin, Germany: Springer, 2005
|
[31] |
张守建, 李建成, 邹贤才, 等. GRACE卫星非差运动学精密定轨分析[J]. 武汉大学学报·信息科学版, 2010, 35(6): 679-682 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006011.htm
Zhang Shoujian, Li Jiancheng, Zou Xiancai, et al. Analysis of Zero-Difference Kinematic POD for GRACE[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 679-682 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006011.htm
|
[1] | CHANG Yonglei, YANG Jie, LI Pingxiang, ZHAO Lingli, YU Jie. Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 762-767. DOI: 10.13203/j.whugis20140828 |
[2] | LI Lan, CHEN Erxue, LI Zengyuan, FENG Qi, ZHAO Lei. K-Wishart Classifier for PolSAR Data and Its Performance Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1498-1504. DOI: 10.13203/j.whugis20140649 |
[3] | CHEN Jianhong, ZHAO Yongjun, LAI Tao, LIU Wei, HUANG Jie. Fast Non-local Means Filtering of SLC Fully PolSAR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 629-634. DOI: 10.13203/j.whugis20140089 |
[4] | XIA Guisong, XUE Nan, WANG Zifeng, ZHANG Liangpei. Anisotropic Diffusion on Complex Tensor Fields for PolSAR Image Filtering[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1533-1538,1556. DOI: 10.13203/j.whugis20140630 |
[5] | ZHAO Lei, CHEN Erxue, LI Zengyuan, FENG Qi, LI Lan, YANG Hao. Segmentation of PolSAR Data Based on Mean-Shift and Spectral Graph Partitioning and Its Evaluation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1061-1068. DOI: 10.13203/j.whugis20130681 |
[6] | FU Haiqiang, WANG Changcheng, ZHU Jianjun, XIE Qinghua, ZHAO Rong. A Polarimetric Classification Method Based on Neumann Decomposition[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 607-611. DOI: 10.13203/j.whugis20130372 |
[7] | HUANG Xiaodong, LIU Xiuguo, CHEN Qihao, CHEN Qi. An Integrated Multi\|characteristics Buildings Segmentation Model of PolSAR Images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 450-454. |
[8] | YU Jie, LIU Limin, LI Xiaojuan, ZHAO Zheng. Applications of ICA for Filtering of Fully Polarimetric SAR Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 212-216. |
[9] | YANG Jie, ZHAO Lingli, LI Pingxiang, LANG Fengkai. Preserving Polarimetric Scattering Characteristics Classification by Introducing Normalized Circular-pol Correlation Coefficient[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 911-914. |
[10] | ZOU Tongyuan, YANG Wen, DAI Dengxin, SUN Hong. An Unsupervised Classification Method of POLSAR Image[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 910-913. |