TAN Han, WU Jiaqi. Accuracy Assessment for LEO Precise Orbit Determination with Single-Difference Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1460-1469. DOI: 10.13203/j.whugis20200385
Citation: TAN Han, WU Jiaqi. Accuracy Assessment for LEO Precise Orbit Determination with Single-Difference Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1460-1469. DOI: 10.13203/j.whugis20200385

Accuracy Assessment for LEO Precise Orbit Determination with Single-Difference Ambiguity Resolution

Funds: 

The National Key Research and Development Program of China 2018YFB0505403

More Information
  • Author Bio:

    TAN Han, master, engineer, specializes in GNSS precision positioning and orbit determination. E-mail: tanhan@whu.edu.cn

  • Received Date: September 13, 2020
  • Available Online: September 19, 2022
  • Published Date: September 04, 2022
  •   Objectives  High-accuracy and high-reliability satellite orbit is the fundamental requirement for precise applications of low earth orbit (LEO) satellites. Due to the uncalibrated phase delay (UPD) originated from receivers and satellites, the phase ambiguity cannot be estimated as integer values. Fixing phase ambiguity to proper integer number is one of the key issues to improve the precise orbit determination (POD) accuracy. The algorithms and methods of single-difference (SD) ambiguity resolution (AR) based on integer clocks are demonstrated. The reduced dynamic POD and kinematic POD with SD AR are implemented and the performance is analyzed.
      Methods  Integer clock is the precise clock product that absorbs satellite UPD. By applying integer clock products, the receiver UPD can be eliminated by forming SD ambiguities between two global navigation satellite system (GNSS) satellites. And the SD ambiguity recover its integer nature and can be fixed to integer value by a rounding strategy. The onboard gravity recovery and climate experiment follow on (GRACE-FO)data (GRACE-C/D) and integer clocks from Centre National d' Etudes Spatiales/ Collecte Localisation Satellites (CNES/CLS) of April and May 2019 was employed to evaluate the improvement of reduced dynamic POD and kinematic POD accuracy with SD AR.
      Results  The wide-lane ambiguity fixing rates of both reduced dynamic and kinematic POD reach 99% and the narrow-lane fixing rates are about 95%. For reduced dynamic POD, the 3D root mean square error (RMSE) values of overlapping orbit difference reduced from 7.1 mm and 7.4 mm to 4.2 mm and 3.6 mm for GRACE-C/D, respectively. The standard deviation values of satellite laser ranging (SLR) residuals decrease from 15.9 mm and 14.4 mm to 10.8 mm and 11.0 mm, with improvements of 32% and 24%. Besides, the RMSE values of K-band ranging residuals reduced from 8.0 mm to 2.9 mm, demonstrating that SD AR can also improve the relative position accuracy of LEO satellites. As for kinematic POD, the 3D RMSE values for orbit difference with precise science orbit (PSO) of ambiguity-float solution are 37.5 mm and 36.4 mm, while those of ambiguity-fixed solution are 27.7 mm and 25.5 mm, with improvements of about 28%. Moreover, the SLR residuals results also improved by 20%.
      Conclusions  With the integer clock products, SD AR can be achieved using onboard observations of a single LEO satellite. The SD AR can significantly improve both the reduced dynamic and kinematic POD accuracy of LEO satellites.
  • [1]
    Bezděk A, Sebera J, Klokočník J, et al. Gravity Field Models from Kinematic Orbits of CHAMP, GRACE and GOCE Satellites[J]. Advances in Space Research, 2014, 53(3): 412-429 doi: 10.1016/j.asr.2013.11.031
    [2]
    Beckley B D, Lemoine F G, Luthcke S B, et al. A Reassessment of Global and Regional Mean Sea Level Trends from TOPEX and Jason-1 Altimetry Based on Revised Reference Frame and Orbits[J]. Geophysical Research Letters, 2007, 34(14): L14608 doi: 10.1029/2007GL030002
    [3]
    Wickert J, Reigber C, Beyerle G, et al. Atmosphere Sounding by GPS Radio Occultation: First Results from CHAMP[J]. Geophysical Research Letters, 2001, 28(17): 3263-3266 doi: 10.1029/2001GL013117
    [4]
    Cerri L, Berthias J P, Bertiger W I, et al. Precision Orbit Determination Standards for the Jason Series of Altimeter Missions[J]. Marine Geodesy, 2010, 33(sup1): 379-418 doi: 10.1080/01490419.2010.488966
    [5]
    Kang Z G, Tapley B, Bettadpur S, et al. Precise Orbit Determination for the GRACE Mission Using only GPS Data[J]. Journal of Geodesy, 2006, 80(6): 322-331 doi: 10.1007/s00190-006-0073-5
    [6]
    张小红, 李星星. 非差模糊度整数固定解PPP新方法及实验[J]. 武汉大学学报·信息科学版, 2010, 35(6): 657-660 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006006.htm

    Zhang Xiaohong, Li Xingxing. A New Method for Zero-Differenced Interger Ambiguity Resolution and Its Application to PPP[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 657-660 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006006.htm
    [7]
    Laurichesse D, Mercier F, Berthias J P, et al. Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination[J]. Navigation, 2009, 56(2): 135-149 doi: 10.1002/j.2161-4296.2009.tb01750.x
    [8]
    Collins P, Bisnath S, Lahaye F, et al. Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing[J]. Navigation, 2010, 57(2): 123-135 doi: 10.1002/j.2161-4296.2010.tb01772.x
    [9]
    Geng J H, Meng X L, Dodson A H, et al. Integer Ambiguity Resolution in Precise Point Positioning: Method Comparison[J]. Journal of Geodesy, 2010, 84(9): 569-581 doi: 10.1007/s00190-010-0399-x
    [10]
    Shi J B, Gao Y. A Comparison of Three PPP Integer Ambiguity Resolution Methods[J]. GPS Solutions, 2014, 18(4): 519-528 doi: 10.1007/s10291-013-0348-2
    [11]
    Loyer S, Perosanz F, Mercier F, et al. Zero‐Difference GPS Ambiguity Resolution at CNES-CLS IGS Analysis Center[J]. Journal of Geodesy, 2012, 86(11): 991-1003 doi: 10.1007/s00190-012-0559-2
    [12]
    Banville S, Geng J H, Loyer S, et al. On the Interoperability of IGS Products for Precise Point Positioning with Ambiguity Resolution[J]. Journal of Geodesy, 2020, 94(1), DOI: 10.1007/s00190-019-01335-w
    [13]
    Hu J H, Zhang X H, Li P, et al. Multi-GNSS Fractional Cycle Bias Products Generation for GNSS Ambiguity‐Fixed PPP at Wuhan University[J]. GPS Solutions, 2020, 24(1), DOI: 10.1007/s10291-019-0929-9
    [14]
    张小红, 李盼, 左翔. 固定模糊度的精密单点定位几何定轨方法及结果分析[J]. 武汉大学学报·信息科学版, 2013, 38(9): 1009-1013 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201309002.htm

    Zhang Xiaohong, Li Pan, Zuo Xiang. Kinematic Precise Orbit Determination Based on Ambiguity-Fixed PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1009-1013 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201309002.htm
    [15]
    Montenbruck O, Hackel S, Ijssel J, et al. Reduced Dynamic and Kinematic Precise Orbit Determination for the Swarm Mission from 4 Years of GPS Tracking[J]. GPS Solutions, 2018, 22(3), DOI: 10.1007/s10291-018-0746-6
    [16]
    Montenbruck O, Hackel S, Jäggi A. Precise Orbit Determination of the Sentinel-3A Altimetry Satellite Using Ambiguity-Fixed GPS Carrier Phase Observations[J]. Journal of Geodesy, 2018, 92(7): 711-726 doi: 10.1007/s00190-017-1090-2
    [17]
    张强. 采用GPS与北斗的低轨卫星及其编队精密定轨关键技术研究[D]. 武汉: 武汉大学, 2018

    Zhang Qiang. Research on the Key Technologies of Precise Orbit Determination for Low Earth Orbit Satellites and Their Formation Using GPS and BDS[D]. Wuhan: Wuhan University, 2018
    [18]
    Allende-Alba G, Montenbruck O, Hackel S, et al. Relative Positioning of Formation-Flying Spacecraft Using Single-Receiver GPS Carrier Phase Ambiguity Fixing[J]. GPS Solutions, 2018, 22(3), DOI: 10.1007/s10291-018-0734-x
    [19]
    Chen H, Jiang W P, Ge M R, et al. An Enhanced Strategy for GNSS Data Processing of Massive Networks[J]. Journal of Geodesy, 2014, 88(9): 857-867 doi: 10.1007/s00190-014-0727-7
    [20]
    Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399 doi: 10.1007/s00190-007-0187-4
    [21]
    Melbourne W. The Case for Ranging in GPS-Based Geodetic Systems[C]//The 1st International Symposium on Precise Positioning with the Global Positioning Systems, Rockville, USA, 1985
    [22]
    Wübbena G. Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements[C] //The 1st International Symposium on Precise Positioning with the Global Positioning Systems, Rockville, USA, 1985
    [23]
    Jäggi A, Dach R, Montenbruck O, et al. Phase Center Modeling for LEO GPS Receiver Antennas and Its Impact on Precise Orbit Determination[J]. Journal of Geodesy, 2009, 83(12), DOI: 10.1007/s00190-009-0333-2
    [24]
    Dong U D N, Bock Y. Global Positioning System Network Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California[J]. Journal of Geophysical Research, 1989, 94(B4): 3949-3966 doi: 10.1029/JB094iB04p03949
    [25]
    Wu J T, Wu S C, Hajj G A, et al. Effects of Antenna Orientation on GPS Carrier Phase[J]. Advances in the Astronautical Sciences, 1992, 76(2): 1647-1660
    [26]
    Lyard F, Lefevre F, Letellier T, et al. Modelling the Global Ocean Tides: Modern Insights from FES2004[J]. Ocean Dynamics, 2006, 56(5): 394-415
    [27]
    Priestley K J, Smith G L, Thomas S, et al. Radiometric performance of the CERES Earth Radiation Budget Climate Record Sensors on the EOS Aqua and Terra Spacecraft[C]//Optical Engineering+ Applications, San Diego, USA, 2007
    [28]
    Bertiger W, Desai S D, Haines B, et al. Single Receiver Phase Ambiguity Resolution with GPS Data[J]. Journal of Geodesy, 2010, 84(5): 327-337 doi: 10.1007/s00190-010-0371-9
    [29]
    Pearlman M R, Degnan J J, Bosworth J M. The International Laser Ranging Service[J]. Advances in Space Research, 2002, 30(2): 135-143 doi: 10.1016/S0273-1177(02)00277-6
    [30]
    Švehla D, Rothacher M. Kinematic Precise Orbit Determination for Gravity Field Determination[M]//International Association of Geodesy Symposia. Berlin, Germany: Springer, 2005
    [31]
    张守建, 李建成, 邹贤才, 等. GRACE卫星非差运动学精密定轨分析[J]. 武汉大学学报·信息科学版, 2010, 35(6): 679-682 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006011.htm

    Zhang Shoujian, Li Jiancheng, Zou Xiancai, et al. Analysis of Zero-Difference Kinematic POD for GRACE[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 679-682 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006011.htm
  • Related Articles

    [1]WANG Longyu, GUO Jing, LI Zhenhong, YU Chen, WANG Chen, ZHAO Qile. Centimeter Level Orbit Determination for GF3A SAR Satellite with Zero-Difference Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1546-1555. DOI: 10.13203/j.whugis20240077
    [2]KUANG Kaifa, YANG Yuchen, WEN Fangying, CHEN Zheng, HAN Houzeng, WANG Jian. BDS-3 Real-Time Filtered Precise Orbit Determination with Undifferenced Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1223-1231. DOI: 10.13203/j.whugis20230055
    [3]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [4]KAN Haoyu, HU Zhigang, LÜ Yifei, XIE Xin, ZHOU Renyu, ZHAO Qile. Performance Evaluation of BDS-3 Spaceborne Atomic Clock Using Different Time Synchronization Systems[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 604-610. DOI: 10.13203/j.whugis20210286
    [5]ZHANG Wanwei, WANG Fuhong, GONG Xuewen, GUO Lei. A Centimeter-Level Real-Time Orbit Determination Method Using Space-Borne GPS Measurements Considering IGS-RTS Data Receiving Interruption[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1620-1626. DOI: 10.13203/j.whugis20200432
    [6]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [7]TIAN Yingguo, HAO Jinming, CHEN Mingjian, YU Heli, HENG Peishen. Impact of Sample Rate of GPS Satellite Clock and Observation Data on LEO GPS-Based Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1792-1796. DOI: 10.13203/j.whugis20150591
    [8]ZHANG Xiaohong, LI Pan, ZUO Xiang. Kinematic Precise Orbit Determination Based on Ambiguity-Fixed PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1009-1013.
    [9]LIU Jihua, OU Jikun, SUN Baoqi, ZHONG Shiming. The GEO Satellite Precise Orbit Determination Based on Inter-satellite Single Difference Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 24-28.
    [10]HAN Baomin. Densification Methods of GPS Satellite Clock Errors and Their Impact on Orbit Determination Precision of LEOs[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1075-1078.
  • Cited by

    Periodical cited type(5)

    1. 金彪,陈姗姗,李敏,李子潇,原晋栩. 星载GPS/Galileo数据Sentinel-6A卫星运动学精密定轨研究. 武汉大学学报(信息科学版). 2025(01): 42-52 .
    2. 郭荣欣,辜声峰,龚晓鹏. BDS-3全球短报文2种低轨卫星几何法定轨. 导航定位学报. 2024(04): 1-10 .
    3. 王龙雨,郭靖,李振洪,余琛,王晨,赵齐乐. 非差模糊度固定的高分三号SAR卫星厘米级定轨. 武汉大学学报(信息科学版). 2024(09): 1546-1555 .
    4. 卢春,何祖祺,刘友谊,陈川. 基于EKF算法与卫星导航的民航货运高精度定位系统研究. 计算技术与自动化. 2024(04): 22-28 .
    5. 梁玉可,党亚民,杨强,齐珂. BDS不同星座组合对亚太地区相对定位的影响. 测绘科学. 2022(01): 33-39 .

    Other cited types(5)

Catalog

    Article views (773) PDF downloads (105) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return