ZHANG Fuhao, ZHU Yueyue, ZHAO Xizhi, ZHANG Yang, SHI Lihong, LIU Xiaodong. Spatial Distribution and Identification of Hidden Danger Points of Landslides Based on Geographical Factors[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1233-1244. DOI: 10.13203/j.whugis20200126
Citation: ZHANG Fuhao, ZHU Yueyue, ZHAO Xizhi, ZHANG Yang, SHI Lihong, LIU Xiaodong. Spatial Distribution and Identification of Hidden Danger Points of Landslides Based on Geographical Factors[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1233-1244. DOI: 10.13203/j.whugis20200126

Spatial Distribution and Identification of Hidden Danger Points of Landslides Based on Geographical Factors

Funds: 

The National Key Research and Development Program of China 2016YFC0803108

the Lanzhou Jiaotong University EP 201806

More Information
  • Author Bio:

    ZHANG Fuhao,PhD,professor, specializes in government geographic information system.E-mail:Zhangfh@casm.ac.cn

  • Corresponding author:

    ZHAO Xizhi, PhD. E-mail: zxz@casm.ac.cn

  • Received Date: March 28, 2020
  • Published Date: August 04, 2020
  •   Objectives  407 hidden danger points of landslides and geological structures, topography, and human activities data were used to study the disaster-pregnancy environment in Xiangxi Autonomous Prefecture, the spatial and temporal distribution of landslide hazards and its correlation with the geological envi-ronment, to achieve quantitative analysis of the spatial distribution characteristics of landslides in Xiangxi Autonomous Prefecture; to verify the accuracy of XGBoost applied to the classification of landslide susceptibility and to analyze the topography, geological conditions, precipitation, human activities and other factors and landslide hazards.
      Methods   According to the geographical census data, use proximity analysis to form the distance data of roads, buildings, structures, artificial piles, and bare landslide points; use DEM (digital elevation model) data and spatial analysis tools to calculate the slope, aspect, and curvature of the study area data; area data includes cultivated land area, forest land area, road area, water area, building area, structure area, artificial pile area and bare land area, referring to cultivated land, forest land, road, areas of waters, buildings, structures, artificial piles and bare grounds; use extraction tools to obtain precipitation data for each hidden danger point of the landslide from precipitation data with a spatial resolution of 1° × 1°; pass the band calculation and eliminate invalid value to get NDVI(normalized differential vegetation index) data; use the ArcGIS extraction tool to obtain the soil moisture at each landslide point. By counting the number of hidden trouble spots in different elevations, slopes, vegetation coverage and other areas, the spatial distribution characteristics of hidden trouble spots of landslides are analyzed. At the same time, 1 020 sample points in Xiangxi Autonomous Prefecture were selected, of which 407 were landslide disaster points, a binary classification model was constructed, and XGBoost was used to construct a classification model of hidden and non-hidden hazard points of landslides. The classification results were compared with the actual situation by calculating the confusion matrix to analyze the accuracy of the model, and the importance of features.
      Results   Hidden danger points of landslides in Xiangxi Autonomous Prefecture are mostly distributed in places where the altitude is 400-600 m and the slope is 3°-30°, the aspect is northwest, and the profile curvature is between -0.6-1.4. From the perspective of the lithology and geological structure of the landslide, the landslides in Xiangxi Autonomous Prefecture are mostly soil landslides, mainly small and medium scales. In terms of geological types, the landslides are mostly distributed in the Cretaceous and Tertiary red layers, and the Triassic Badong Formation red beds and Ordovician marl and marl layers. Results shows that the accuracy rate of identifying hidden danger points of landslides is 91.27%, the sample accuracy rate is 89.75%, and the recall rate is 88.21%. Compared with the random forest algorithm, the accuracy and recall rate of the XGBoost model are higher, indicating that XGBoost can achieve higher accuracy in landslide detection.
      Conclusions   Taking Xiangxi Prefecture, Hunan Province, China as the research area, the spatial distribution characteristics of landslide hidden points are analyzed, and it is found that the landslide hidden points are mostly distributed between 400-600 m, slope 3°-30°, slope to the northwest, curvature -0.6-1.4, low vegetation coverage areas with high soil moisture and obvious human intervention. Based on XGBoost, a landslide hidden point identification model was constructed with an accuracy rate of 91.27%, an accuracy rate and a recall rate of 89.75% and 88.21%, respectively. The accuracy and recall rate of its identification model are higher than the random forest algorithm, indicating that XGBoost is detected in landslide detection.
  • [1]
    国土资源部.全国地质灾害防治"十三五"规划[J].中国应急管理, 2016(12):39-44 http://www.cnki.com.cn/Article/CJFDTotal-GTJJ200804006.htm

    Ministry of Land and Resources.Thirteenth Five-Year Plan for National Geological Disaster Prevention and Control[J].China Emergency Management, 2016(12): 39-44 http://www.cnki.com.cn/Article/CJFDTotal-GTJJ200804006.htm
    [2]
    韩红桂, 胡惠华, 吕强.湘西朱雀洞红层滑坡特征及成因分析[J].中外建筑, 2008(9):143-145 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwjz200809040

    Han Honggui, Hu Huihua, Lü Qiang.Characteristics and Cause Analysis of Red Bed Landslide in Zhuquedong, Western Hunan[J].Chinese and Foreign Architecture, 2008 (9): 143-145 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwjz200809040
    [3]
    孙德亮.基于机器学习的滑坡易发性区划与降雨诱发滑坡预报预警研究[D].上海: 华东师范大学, 2019

    Sun Deliang. Research on Landslide Susceptibility Zoning and Rainfall-Induced Landslide Forecasting and Warning Based on Machine Learning[D].Shanghai: East China Normal University, 2019
    [4]
    吴常润, 赵冬梅, 刘澄静, 等.基于GIS的华宁县滑坡灾害影响因子分析及易发性评价[J].水土保持研究, 2019, 26(6):212-218 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj201906034

    Wu Changrun, Zhao Dongmei, Liu Chengjing, et al. Analysis of Landslide Disaster Influencing Factors and Susceptibility Evaluation in Huaning County Based on GIS [J]. Research of Soil and Water Conservation, 2019, 26(6): 212-218 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj201906034
    [5]
    朱丹桐.基于地表形变点的滑坡易发性评价研究[D].南京: 南京师范大学, 2016

    Zhu Dantong. Evaluation of Landslide Vulnerability Based on Ground Deformation Point [D].Nanjing: Nanjing Normal University, 2016
    [6]
    王娜.巴州区降雨型滑坡预警研究[D].成都: 电子科技大学, 2019

    Wang Na. Prediction of Rainfall Landslides in Bazhou District[D].Chengdu: University of Electronic Science and Technology of China, 2019
    [7]
    罗杨.基于GIS与RS技术的什邡市滑坡易发性评价[D].成都: 成都理工大学, 2019

    Luo Yang. Evaluation of Landslide Susceptibility in Shifang City Based on GIS and RS Technology [D].Chengdu: Chengdu University of Technology, 2019
    [8]
    李松林, 许强, 汤明高, 等.三峡库区滑坡空间发育规律及其关键影响因子[J].地球科学, 2020, 45(1):341-354 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx202001026

    Li Songlin, Xu Qiang, Tang Minggao, et al.Regional Development of Landslides in the Three Gorges Re-servoir Area and Its Key Influencing Factors [J].Earth Science, 2020, 45(1): 341-354 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx202001026
    [9]
    李燕婷, 朱海莉, 陈少华.层次分析法的黄河上游滑坡易发性评价[J].测绘科学, 2016, 41(8):67-70 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201608014

    Li Yanting, Zhu Haili, Chen Shaohua.Analysis of the Susceptibility of Landslides in the Upper Reaches of the Yellow River to the Analytic Hierarchy Process [J].Science of Surveying and Mapping, 2016, 41(8): 67-70 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201608014
    [10]
    Kavzoglu T, Sahin E K, Colkesen I. Landslide Susceptibility Mapping Using GIS-Based Multi-criteria Decision Analysis, Support Vector Machines, and Logistic Regression[J]. Landslides, 2014, 11(3): 425-439 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78a7e820ee2e4f02ac92a71cd1951bc4
    [11]
    林齐根, 邹振华, 祝瑛琦, 等.基于光谱、空间和形态特征的面向对象滑坡识别[J].遥感技术与应用, 2017, 32(5):931-937 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygjsyyy201705018

    Lin Qigen, Zou Zhenhua, Zhu Yingqi, et al.Object-Oriented Landslide Recognition Based on Spectral, Spatial and Morphological Features[J].Remote Sensing Technology and Application, 2017, 32(5): 931-937 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygjsyyy201705018
    [12]
    李勋, 杨环, 殷宗敏, 等.基于DEM和遥感影像的区域黄土滑坡体识别方法研究[J].地理与地理信息科学, 2017, 33(4):86-92 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj201704015

    Li Xun, Yang Huan, Yin Zongmin, et al. Research on Regional Loess Landslide Identification Method Based on DEM and Remote Sensing Images[J].Geography and Geographic Information Science, 2017, 33(4): 86-92 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj201704015
    [13]
    许领, 戴福初, 邝国麟, 等.IKONOS影像在黑方台黄土滑坡调查中的应用[J].遥感学报, 2009, 13(4):729-734 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200904014

    Xu Ling, Dai Fuchu, Kuang Guolin, et al.Application of IKONOS Image to Survey of Loess Landslide in Heifangtai [J].Journal of Remote Sensing, 2009, 13(4): 729-734 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200904014
    [14]
    李强, 张景发, 罗毅, 等.2017年"8·8"九寨沟地震滑坡自动识别与空间分布特征[J].遥感学报, 2019, 23(4):785-795

    Li Qiang, Zhang Jingfa, Luo Yi, et al.Automatic Identification and Spatial Distribution Characteristics of the "8·8" Jiuzhaigou Earthquake in 2017[J].Journal of Remote Sensing, 2019, 23 (4): 785-795
    [15]
    冯杭建, 周爱国, 唐小明, 等.中国东南地区隐性滑坡遥感识别研究[J].地质论评, 2014, 60(6):1 370-1 380 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201406015

    Feng Hangjian, Zhou Aiguo, Tang Xiaoming, et al.Remote Sensing Identification of Recessive Landslide in Southeast China [J].Geological Review, 2014, 60 (6): 1 370-1 380 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201406015
    [16]
    王瑞琪, 王学良, 刘海洋, 等.基于精细DEM的崩塌滑坡灾害识别及主控因素分析:以雅鲁藏布江缝合带加查-朗县段为例[J].工程地质学报, 2019, 27(5):1 146-1 152 http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=GCDZ201905026

    Wang Ruiqi, Wang Xueliang, Liu Haiyang, et al. Collapse and Landslide Disaster Identification and Analysis of Main Control Factors Based on Fine DEM: Taking the Jiacha-Langxian Section of the Yarlungzangbo River Suture Zone as an Example [J].Journal of Engineering Geology, 2019, 27(5): 1 146-1 152 http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=GCDZ201905026
    [17]
    Barlow J, Franklin S, Martin Y. High Spatial Resolution Satellite Imagery, DEM Derivatives, and Image Segmentation for the Detection of Mass Wasting Processes[J].Photogrammetric Engineering and Remote Sensing, 2006, 72(6): 687-692 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c60d0f5c155fd7a7d87d1dc8ef8f21b7
    [18]
    赵宝强.基于InSAR技术的白龙江流域地表变形特征与潜在滑坡早期识别研究[D].兰州: 兰州大学, 2019

    Zhao Baoqiang. Study on the Characteristics of Surface Deformation and Early Identification of Potential Landslides in the Bailong River Basin Based on InSAR Technology[D].Lanzhou: Lanzhou University, 2019
    [19]
    陆会燕, 李为乐, 许强, 等.光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J].武汉大学学报·信息科学版, 2019, 44(9):1 342-1 354 doi: 10.13203/j.whugis20190086

    Lu Huiyan, Li Weile, Xu Qiang, et al.Early Identification of Hidden Dangers of Upstream and Downstream Landslides in the Baisha Landslide in Jinsha-jiang Combined with Optical Remote Sensing[J].Geomatics and Information Science of Wuhan University, 2019, 44 (9): 1 342-1 354 doi: 10.13203/j.whugis20190086
    [20]
    张亚迪, 李煜东, 董杰, 等.时序InSAR技术探测芒康地区滑坡灾害隐患[J].遥感学报, 2019, 23(5):987-996 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb201905018

    Zhang Yadi, Li Yudong, Dong Jie, et al.Time Series InSAR Technology to Detect Hidden Dangers of Landslide Disaster in Mangkang Area[J].Journal of Remote Sensing, 2019, 23(5): 987-996 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb201905018
    [21]
    郭瑞, 李素敏, 陈娅男, 等.基于SBAS-InSAR的矿区采空区潜在滑坡综合识别方法[J].地球信息科学学报, 2019, 21(7):1 109-1 120 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201907012

    Guo Rui, Li Sumin, Chen Yanan, et al.Comprehensive Identification Method for Potential Landslides in Mined-Out Areas Based on SBAS-InSAR[J].Journal of Geoinformatics, 2019, 21(7): 1 109-1 120 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201907012
    [22]
    葛大庆, 戴可人, 郭兆成, 等.重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J].武汉大学学报·信息科学版, 2019, 44(7):949-956 doi: 10.13203/j.whugis20190094

    Ge Daqing, Dai Keren, Guo Zhaocheng, et al. Thoughts and Suggestions on the Application of Comprehensive Remote Sensing in Early Identification of Hidden Dangers of Major Geological Disasters [J].Geomatics and Information Science of Wuhan University, 2019, 44 (7): 949-956 doi: 10.13203/j.whugis20190094
    [23]
    赵超英, 刘晓杰, 张勤, 等.甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J].武汉大学学报·信息科学版, 2019, 44(7):996-1 007 doi: 10.13203/j.whugis20190072

    Zhao Chaoying, Liu Xiaojie, Zhang Qin, et al. Research on InSAR Identification, Monitoring and Instability Model of Heifangtai Loess Landslide in Gansu[J].Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1 007 doi: 10.13203/j.whugis20190072
    [24]
    史绪国, 张路, 许强, 等.黄土台塬滑坡变形的时序InSAR监测分析[J].武汉大学学报·信息科学版, 2019, 44(7):1 027-1 034 doi: 10.13203/j.whugis20190056

    Shi Xuguo, Zhang Lu, Xu Qiang, et al. Time-Series InSAR Monitoring Analysis of Landslide Deformation on the Loess Plateau [J].Geomatics and Information Science of Wuhan University, 2019, 44(7): 1 027- 1 034 doi: 10.13203/j.whugis20190056
    [25]
    张路, 廖明生, 董杰, 等.基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别:以四川丹巴为例[J].武汉大学学报·信息科学版, 2018, 43(12): 2 039-2 049 doi: 10.13203/j.whugis20180181

    Zhang Lu, Liao Mingsheng, Dong Jie, et al.Early Identification of Landslide Hazards in Western Mountain Areas Based on Time Series InSAR Analysis: A Case Study of Danba, Sichuan[J].Geomatics and Information Science of Wuhan University, 2018, 43 (12): 2 039-2 049 doi: 10.13203/j.whugis20180181
    [26]
    徐承宇.工程地质勘察过程中滑坡的识别及其解决措施[J].产业创新研究, 2018(6):46-47 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkjj201806014

    Xu Chengyu. Identification of Landslides During Engineering Geological Prospecting and Their Solutions [J]. Research on Industrial Innovation, 2018(6): 46-47 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkjj201806014
    [27]
    贾永会, 赵智阳.工程地质勘察中滑坡的识别及其防治[J].住宅与房地产, 2018(13):219 http://d.wanfangdata.com.cn/Periodical/jxdl200206009

    Jia Yonghui, Zhao Zhiyang. Identification and Prevention of Landslides in Engineering Geological Survey[J].Housing and Real Estate, 2018(13): 219 http://d.wanfangdata.com.cn/Periodical/jxdl200206009
    [28]
    陶泳昌, 刘文开, 周安乐.工程地质勘察中滑坡的识别及其防治策略[J].资源信息与工程, 2016, 31(4):189-190 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjswz201604110

    Tao Yongchang, Liu Wenkai, Zhou Anle.Identification of Landslides in Engineering Geological Survey and Its Prevention Strategies [J]. Resources Information and Engineering, 2016, 31(4): 189-190 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjswz201604110
    [29]
    罗爱.工程地质勘察过程中滑坡的识别及其解决措施[J].低碳世界, 2014(11):165-166 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dtsj201411097

    Luo Ai.Identification of Landslides in Engineering Geological Survey and Its Solutions [J].Low Carbon World, 2014(11): 165-166 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dtsj201411097
    [30]
    Lulseged A L, Hiromitsu Y, Norimitsu U. Landslide Susceptibility Mapping Using GIS Based Weighted Liner Combination, the Case in Tsugawa Area of Agano River, Niigata Prefecture, Japan[J].Landslides, 2004, 1(1):73-81
    [31]
    林齐根, 刘燕仪, 刘连友, 等.支持向量机与Newmark模型结合的地震滑坡易发性评估研究[J].地球信息科学学报, 2017, 19(12):1 623-1 633 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201712009

    Lin Qigen, Liu Yanyi, Liu Lianyou, et al.Evaluation of Earthquake Landslide Susceptibility Based on Support Vector Machine and Newmark Model [J].Journal of Geo-Information Science, 2017, 19(12): 1 623-1 633 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201712009
    [32]
    Xie Jiren, Uchimura T, Chen Pan, et al. A Relationship Between Displacement and Tilting Angle of the Slope Surface in Shallow Landslides[J]. Landslides, 2019, 16(6):1 243-1 251
    [33]
    Taalab K, Cheng T, Zhang Y. Mapping Landslide Susceptibility and Types Using Random Forest[J]. Big Earth Data, 2018, 2(2): 159-178 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/20964471.2018.1472392
    [34]
    谢明娟, 蒲瑞, 韩信, 等.基于多模型的滑坡易发性评价[J].测绘与空间地理信息, 2019, 42(10):83-85 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201910024

    Xie Mingjuan, Pui Rui, Han Xin, et al.Evaluation of Landslide Susceptibility Based on Multi-model [J].Geomatics and Spatial Information, 2019, 42(10): 83-85 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201910024
    [35]
    朱庆, 曾浩炜, 丁雨淋, 等.重大滑坡隐患分析方法综述[J].测绘学报, 2019, 48(12):1 551-1 561 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201912008

    Zhu Qing, Zeng Haowei, Ding Yulin, et al.A Summary of Analysis Methods for Hidden Dangers of Major Landslides[J].Journal of Surveying and Mapping, 2019, 48(12): 1 551-1 561 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201912008
    [36]
    彭佳丽, 刘春容, 李旭, 等.采用XGBoost和随机森林探索中国西部女性乳腺癌危险因素[J].现代预防医学, 2020, 47(1): 1-4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdyfyx202001001

    Peng Jiali, Liu Chunrong, Li Xu, et al. Exploring Breast Cancer Risk Factors for Women in Western China Using XGBoost and Random Forests[J]. Modern Preventive Medicine, 2020, 47(1): 1-4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdyfyx202001001
    [37]
    Torlay L, Perrone-Bertolotti M, Thomas E. Machine Learning: XGBoost Analysis of Language Networks to Classify Patients with Epilepsy[J]. Brain Informatics, 2017, 4(3): 159-169
    [38]
    李占山, 刘兆赓.基于XGBoost的特征选择算法[J].通信学报, 2019, 40(10):101-108 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=txxb201910010

    Li Zhanshan, Liu Zhaogeng.XGBoost-Based Feature Selection Algorithm[J].Journal of Communications, 2019, 40(10): 101-108 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=txxb201910010
    [39]
    郭芳芳, 杨农, 孟晖, 等.地形起伏度和坡度分析在区域滑坡灾害评价中的应用[J].中国地质, 2008(1):131-143 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200801014

    Guo Fangfang, Yang Nong, Meng Hui, et al.Application of Terrain Fluctuation and Slope Analysis to Regional Landslide Disaster Assessment[J].China Geology, 2008(1): 131-143 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200801014
    [40]
    Hirowatari Y, Murakami S, Nishi T. Applying of Multi-plane Slip Surface Analysis Using Elevation Data of Terrain Before and After Slope Disaster to Investigate Landslide Mechanism[M]//DucLong P, Dung N. Geotechnics for Sustainable Infrastructure Development. Singapore: Springer, 2020
    [41]
    陈楠.剖面曲率精度变化与DEM分辨率关系[J].中国矿业大学学报, 2013, 42 (1) :147-151 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201301025

    Chen Nan.Relationship Between the Change of Profile Curvature Accuracy and DEM Resolution [J]. Journal of China University of Mining and Technology, 2013, 42(1): 147-151 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201301025
    [42]
    马文瀚.湖南省地质灾害孕灾机理及综合防治研究[D].长沙: 中南大学, 2012

    Ma Wenhan. Study on the Mechanism and Comprehensive Prevention of Geological Disasters in Hunan Province [D]. Changsha: Central South University, 2012
    [43]
    谢明娟, 蒲瑞, 韩信, 等.基于多模型的滑坡易发性评价[J].测绘与空间地理信息, 2019, 42(10):83-85 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201910024

    Xie Mingjuan, Pui Rui, Han Xin, et al.Evaluation of Landslide Susceptibility Based on Multi-model [J].Geomatics and Spatial Information, 2019, 42(10): 83-85 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201910024
    [44]
    盛海洋, 李红旗.我国滑坡、崩塌的区域特征、成因分析及其防御[J].水土保持研究, 2004(3):208-210 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj200403062

    Sheng Haiyang, Li Hongqi.Analysis of Landslides and Collapses in China, Their Regional Characteristics, Cause Analysis and Defense[J].Soil and Water Conservation Research, 2004(3): 208-210 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj200403062
    [45]
    张永梅, 陈惠妮, 张奕.基于XGBoost的雾霾预测方法[J].计算机工程与设计, 2019, 40(12): 3 631-3 638 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgcysj201912044

    Zhang Yongmei, Chen Huini, Zhang Yi. Haze Prediction Method Based on XGBoost[J].Computer Engineering and Design, 2019, 40(12): 3 631-3 638 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgcysj201912044
    [46]
    Ren X, Guo H, Li S, et al. A Novel Image Classification Method with CNN-XGBoost Model[M]//Kraetzer C, Shi Y Q, Dittmann J, et al. Digital Forensics and Watermarking.New York:Springer, 2017
    [47]
    Gumu M, Kiran M S. Crude Oil Price Forecasting Using XGBoost[C]. International Conference on Computer Science and Engineering, Antalya, USA, 2017
    [48]
    Hu Q, ZhouY, Wang S. Machine Learning and Fractal Theory Models for Landslide Susceptibility Mapping:Case Study from the Jinsha River Basin[J]. Geomorphology, 2020, DOI: 10.1016/j.geomorph.2019.106975
  • Related Articles

    [1]YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120
    [2]HE Huiyou, FANG Jian. Gravity Anomaly Spectrum Analysis Method and Its Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2092-2102. DOI: 10.13203/j.whugis20200510
    [3]XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491
    [4]DU Jinsong, CHEN Chao, LIANG Qing, ZHANG Yi. Lunar Gravity Anomaly and Its Computational Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1369-1373.
    [5]LI Zhenhai, LUO Zhicai, WANG Haihong, ZHONG Bo. Requirements for Gravity Data Within the Given Accuracy of the Interpolated Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1328-1331.
    [6]WU Yunsun, CHAO Dingbo, LI Jiancheng, WANG Zhengtao. Recovery of Ocean Depth Model of South China Sea from Altimetric Gravity Gradient Anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423-1425.
    [7]WANG Haihong, NING Jinsheng, LUO Zhicai, LUO Jia. Separation of Gravity Anomalies Based on Multiscale Edges[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 109-112.
    [8]CHAO Dingbo, YAO Yunsheng, LI Jiancheng, XU Jusheng. Interpretaion on the Tectonics and Characteristics of Altimeter-derived Gravity Anomalies in China South Sea[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 343-347.
    [9]Huang Motao, Guan Zheng, Ouyang Yongzhong. Calculation and Accuracy Estimation of Marine Mean Free-Air Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 327-331.
    [10]Guan Zelin, E Dongchen. The Computation of Geoidal Undulation Deflection of Vertical and Gravity Anomalies Using Clenshaw Summation[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 75-82.
  • Cited by

    Periodical cited type(10)

    1. 费婷婷,丁晓婷,阙翔,林津,林健,王紫薇,刘金福. 基于SBM-DEA与STWR模型的中国能源碳排放效率时空异质性分析. 环境工程. 2024(10): 188-200 .
    2. 熊景华,郭生练,王俊,尹家波,李娜. 长江流域陆地水储量变化及归因研究. 武汉大学学报(信息科学版). 2024(12): 2241-2248 .
    3. 姜栋,赵文吉,王艳慧,万碧玉. 地理加权回归的城市道路时空运行态势空间网格计算方法. 武汉大学学报(信息科学版). 2023(06): 988-996 .
    4. 倪杰,吴通华,赵林,李韧,谢昌卫,吴晓东,朱小凡,杜宜臻,杨成,郝君明. 环北极多年冻土区碳循环研究进展与展望. 冰川冻土. 2019(04): 845-857 .
    5. 刘大元,张雪梅,岳跃民,王克林,邹冬生. 基于Geodetector的广西喀斯特植被覆盖变化及其影响因素分析. 农业现代化研究. 2019(06): 1038-1047 .
    6. 肖屹,何宗宜,苗静,潘峰,杨好. 利用搜索引擎数据模拟疾病空间分布. 测绘通报. 2018(02): 94-98 .
    7. 苗月鲜,方秀琴,吴小君,吴陶樱. 基于GWR模型的江西省山洪灾害区域异同性研究. 水土保持通报. 2018(01): 313-318+327 .
    8. 陈吕凤,朱国平. 基于地理加权模型的南设得兰群岛北部南极磷虾渔场空间分布影响分析. 应用生态学报. 2018(03): 938-944 .
    9. 张雪梅,王克林,岳跃民,童晓伟,廖楚杰,张明阳,姜岩. 生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性. 生态学报. 2017(12): 4008-4018 .
    10. 陈广威,陈吕凤,朱国平,徐玉成,田靖寰,丁博. 南乔治亚岛冬季南极磷虾渔场时空分布及其驱动因子. 生态学杂志. 2017(10): 2803-2810 .

    Other cited types(10)

Catalog

    Article views (1134) PDF downloads (136) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return