TAO Kunwang, ZHAO Yangyang, ZHU Peng, ZHU Yueyue, LIU Shuai, ZHAO Xizhi. Knowledge Graph Construction for Integrated Disaster Reduction[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1296-1302. DOI: 10.13203/j.whugis20200125
Citation: TAO Kunwang, ZHAO Yangyang, ZHU Peng, ZHU Yueyue, LIU Shuai, ZHAO Xizhi. Knowledge Graph Construction for Integrated Disaster Reduction[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1296-1302. DOI: 10.13203/j.whugis20200125

Knowledge Graph Construction for Integrated Disaster Reduction

Funds: 

The National Key Research and Development Program of China 2016YFC0803108

The National Key Research and Development Program of China 2019YFB2102503

Central Leading Local Science and Technology Development Special Foundation [2016]4009

More Information
  • Author Bio:

    TAO Kunwang, associate professor, specializes in geographic information analysis and application.taokw@casm.ac.cn

  • Corresponding author:

    ZHAO Yangyang, PhD, assistant researcher.zhaoyy@casm.ac.cn

  • Received Date: March 28, 2020
  • Published Date: August 04, 2020
  •   Objectives   The knowledge graph is an important tool for revealing entities and the relationships between them. The role of knowledge graph in integrated disaster reduction is becoming increasingly prominent. We summarized the knowledge graph construction method and application for integrated disaster reduction.
      Methods   Firstly, the concepts of knowledge graph and the application of knowledge graph in disaster reduction is introduced. The knowledge graph can realize the rapid aggregation of multi-source heterogeneous data in the integrated and comprehensive disaster reduction, and organize the data of the relevant departments in an orderly manner. The knowledge graph can establish relationships between social fields related to emergency rescue, and reveal cross-network relationships between different fields, different social entities, and entities and data resources and disaster events. Knowledge graphs can more efficiently extract and utilize time-sensitive and information-intensive Internet and social media data.Secondly, the knowledge graph construction process and key technologies for integrated disaster reduction are summarized. Specifically, the knowledge graph construction process includes process multi-source heterogeneous data, extracting entities and relationships from the data according to the application scenario,fusing various types of know- ledge, and finally modeling knowledge graph and store it in the knowledge base. The key technologies mainly include knowledge extraction,information fusion,knowledge graph building,and knowledge storage.
      Results   The knowledge graph has established the connection between the user and the required information, and personalized information can be pushed to three types of users based on the knowledge graph. The main users of the system include three categories, namely emergency management users, public users and emergency rescue users.
      Conclusions   The knowledge graph has the advantage of gathering multi-source heterogeneous data, displaying rich disaster related information, pushing personalized information. The degree of automation of knowledge graph construction in the field of emergency disaster reduction is insufficient. Massive structured and unstructured data brings challenges to the storage and rapid construction of knowledge graphs. In the field of disaster reduction and emergency response, how to effectively and uniformly manage various types of earthquake information in practical applications, improve the prediction accuracy of disaster development trends, and discover the temporal and spatial patterns, evolution laws, activity patterns and internal mechanisms of disasters still need to be further expanded and deepened.
  • [1]
    Nickel M,Murphy K,Tresp V,et al. A Review of Relational Machine Learning for Knowledge Graphs[J]. Proceedings of the IEEE,2015,104(1): 11-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f860dac02933d01531dc828580c7914
    [2]
    刘峤,李杨,段宏,等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyjyfz201603008

    Liu Qiao, Li Yang, Duan Hong, et al. Knowledge Graph Construction Techniques[J]. Journal of Computer Research and Development,2016,53(3):582-600 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyjyfz201603008
    [3]
    侯梦薇,卫荣,陆亮,等. 知识图谱研究综述及其在医疗领域的应用[J]. 计算机研究与发展, 2018, 55(12): 2 587-2 599 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyjyfz201812001

    Hou Mengwei, Wei Rong, Lu Liang, et al. Research Review of Knowledge Graph and Its Application in Medical Domain[J]. Journal of Computer Research and Development, 2018,55(12): 2 587-2 599 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyjyfz201812001
    [4]
    黄征,张雪超,刘长弘. 基于知识图谱的结构化应急数据展现研究[J]. 现代计算机, 2019 (19): 7-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdjsj-xby201919002

    Huang Zheng,Zhang Xuechao,Liu Changhong.Research on the Emergency Data Show Based on Mapping Knowledge Domain[J]. Modern Computer, 2019(19): 7-12 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdjsj-xby201919002
    [5]
    李涓子,侯磊. 知识图谱研究综述[J]. 山西大学学报(自然科学版), 2017, 40(3): 454-459

    Li Juanzi, Hou Lei. Reviews on Knowledge Graph Research[J]. Journal of Shanxi University (Natural Science Edition), 2017, 40(3): 454-459
    [6]
    李洺,王巍. 政府应急平台数据库的数据需求, 实现路径与管理制度[J]. 电子政务, 2008(5): 56-61

    Li Ming, Wang Wei. Data Requirements, Implementation Path and Management System of Government Emergency Platform Database[J]. E-Government,2008(5): 56-61
    [7]
    蒋勋,苏新宁,陈祖琴. 多维视角下应急情报管理体系的知识库构建研究[J]. 情报学报, 2017, 36(10): 1 008-1 022 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qbxb201710004

    Jiang Xun, Su Xinning, Chen Zuqin. Exploratory Research on the Knowledge Base Structure of a Fast Response Informatics Management System on Multi-dimensional Integration[J].Journal of the China Society for Scientific and Technical Information, 2017, 36(10): 1 008-1 022 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qbxb201710004
    [8]
    李泽荃,徐淑华,李碧霄,等. 基于知识图谱的灾害场景信息融合技术[J]. 华北科技学院学报, 2019, 16(2): 1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbkygdzkxxxb201902002

    Li Zequan, Xu Shuhua, Li Bixiao,et al. Information Fusion Technology of Disaster Scenario Based on Knowledge Graph[J]. Journal of North China Institute of Science and Technology, 2019, 16(2): 1-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbkygdzkxxxb201902002
    [9]
    Rudnik C, Ehrhart T, Ferret O, et al. Searching News Articles Using an Event Knowledge Graph Leveraged by Wikidata[C]. The Web Conference, Athens, Hellenic, 2019
    [10]
    顾捷晔. 暴雨洪涝灾害链本体构建与推理方法[D]. 武汉:武汉大学, 2017

    Gu Jieye. Construction and Reasoning Method of the Rainstorm Flood Disaster Chain Ontology[D] Wuhan: Wuhan University, 2017
    [11]
    Huang H,Meng L, Plasencia M, et al. Matched-Filter Detection of the Missing Pre-mainshock Events and Aftershocks in the 2015 Gorkha, Nepal Earthquake Sequence[C].AGU Fall Meeting,San Francisco, CA,USA, 2016
    [12]
    Tonon A, Cudremauroux P, Blarer A, et al. ArmaTweet : Detecting Events by Semantic Tweet Analysis[C]. European Semantic Web Conference, New York, USA, 2017
    [13]
    Xu Z, Zhang H, Hu C, et al. Building Knowledge Base of Urban Emergency Events Based on Crowdsourcing of Social Media[J]. Concurrency and Computation: Practice and Experience, 2016, 28(15): 4 038-4 052 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cpe.3780
    [14]
    韩雪华,王卷乐,卜坤,等. 基于Web文本的灾害事件信息获取进展[J]. 地球信息科学学报,2018,20(8):1 037-1 046 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201808001

    Han Xuehua, Wang Juanle, Bu Kun, et al. Progress in Information Acquisition of Disaster Events from Web Textst[J]. Journal of Geo-Information Science, 2018,20(8): 1 037-1 046 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201808001
    [15]
    Kuzey E, Vreeken J, Weikum G, et al. A Fresh Look on Knowledge Bases: Distilling Named Events from News[C]. Conference on Information and Knowledge Management, Paris, France, 2014
    [16]
    Trivedi R, Dai H, Wang Y, et al. Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs[C]. International Conference on Machine Learning, London, England, 2017
    [17]
    Google.The GDELT Project [EB/OL]. [2020-01- 11].https://www.gdeltproject.org
    [18]
    杨玉基,许斌,胡家威,等. 一种准确而高效的领域知识图谱构建方法[J]. 软件学报, 2018,29(10):2 931-2 947 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjxb201810003

    Yang Yuji, Xu Bin, Hu Jiawei, et al. Accurate and Efficient Method for Constructing Domain Knowledge Graph[J]. Journal of Software,2018,29(10):2 931-2 947 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjxb201810003
    [19]
    仇林遥. 面向自然灾害应急任务的时空数据智能聚合方法[D]. 武汉: 武汉大学, 2017

    Chou Linyao.A Smart Aggregation Method of Spatial-Temporal Data for Natural Disaster Emergency Tasks[D]. Wuhan: Wuhan University, 2017
    [20]
    王恩雁. 基于本体的多源异构应急信息融合方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014

    Wang Enyan.Multi-Source Heterogeneity Information Fusion Methods Based on Ontology Model[D]. Harbin: Harbin Institute Technology of Technology 2014
    [21]
    中国电子技术标准化研究院. 知识图谱标准化白皮书[EB/OL].[2020-01-11].http://www.cesi.cn/201909/5589.html

    China Electronics Standardization Institute.Knowledge Graph Standardization White Paper[EB/OL].[2020-01-11]. http://www.cesi.cn/201909/5589.html
    [22]
    刘峤,李杨,段宏,等. 知识图谱构建技术综述[J].计算机研究与发展,2016,53(3):582-600 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyjyfz201603008

    Liu Qiao, Li Yang, Duan Hong, et al. Knowledge Graph Construction Techniques[J]. Journal of Computer Research and Development,2016,53(3):582-600 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyjyfz201603008
  • Related Articles

    [1]YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120
    [2]HE Huiyou, FANG Jian. Gravity Anomaly Spectrum Analysis Method and Its Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2092-2102. DOI: 10.13203/j.whugis20200510
    [3]XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491
    [4]DU Jinsong, CHEN Chao, LIANG Qing, ZHANG Yi. Lunar Gravity Anomaly and Its Computational Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1369-1373.
    [5]LI Zhenhai, LUO Zhicai, WANG Haihong, ZHONG Bo. Requirements for Gravity Data Within the Given Accuracy of the Interpolated Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1328-1331.
    [6]WU Yunsun, CHAO Dingbo, LI Jiancheng, WANG Zhengtao. Recovery of Ocean Depth Model of South China Sea from Altimetric Gravity Gradient Anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423-1425.
    [7]WANG Haihong, NING Jinsheng, LUO Zhicai, LUO Jia. Separation of Gravity Anomalies Based on Multiscale Edges[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 109-112.
    [8]CHAO Dingbo, YAO Yunsheng, LI Jiancheng, XU Jusheng. Interpretaion on the Tectonics and Characteristics of Altimeter-derived Gravity Anomalies in China South Sea[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 343-347.
    [9]Huang Motao, Guan Zheng, Ouyang Yongzhong. Calculation and Accuracy Estimation of Marine Mean Free-Air Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 327-331.
    [10]Guan Zelin, E Dongchen. The Computation of Geoidal Undulation Deflection of Vertical and Gravity Anomalies Using Clenshaw Summation[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 75-82.
  • Cited by

    Periodical cited type(10)

    1. 费婷婷,丁晓婷,阙翔,林津,林健,王紫薇,刘金福. 基于SBM-DEA与STWR模型的中国能源碳排放效率时空异质性分析. 环境工程. 2024(10): 188-200 .
    2. 熊景华,郭生练,王俊,尹家波,李娜. 长江流域陆地水储量变化及归因研究. 武汉大学学报(信息科学版). 2024(12): 2241-2248 .
    3. 姜栋,赵文吉,王艳慧,万碧玉. 地理加权回归的城市道路时空运行态势空间网格计算方法. 武汉大学学报(信息科学版). 2023(06): 988-996 .
    4. 倪杰,吴通华,赵林,李韧,谢昌卫,吴晓东,朱小凡,杜宜臻,杨成,郝君明. 环北极多年冻土区碳循环研究进展与展望. 冰川冻土. 2019(04): 845-857 .
    5. 刘大元,张雪梅,岳跃民,王克林,邹冬生. 基于Geodetector的广西喀斯特植被覆盖变化及其影响因素分析. 农业现代化研究. 2019(06): 1038-1047 .
    6. 肖屹,何宗宜,苗静,潘峰,杨好. 利用搜索引擎数据模拟疾病空间分布. 测绘通报. 2018(02): 94-98 .
    7. 苗月鲜,方秀琴,吴小君,吴陶樱. 基于GWR模型的江西省山洪灾害区域异同性研究. 水土保持通报. 2018(01): 313-318+327 .
    8. 陈吕凤,朱国平. 基于地理加权模型的南设得兰群岛北部南极磷虾渔场空间分布影响分析. 应用生态学报. 2018(03): 938-944 .
    9. 张雪梅,王克林,岳跃民,童晓伟,廖楚杰,张明阳,姜岩. 生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性. 生态学报. 2017(12): 4008-4018 .
    10. 陈广威,陈吕凤,朱国平,徐玉成,田靖寰,丁博. 南乔治亚岛冬季南极磷虾渔场时空分布及其驱动因子. 生态学杂志. 2017(10): 2803-2810 .

    Other cited types(10)

Catalog

    Article views (3210) PDF downloads (450) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return