WANG Xuan, FAN Xuanmei, YANG Fan, DONG Xiujun. Remote Sensing Interpretation Method of Geological Hazards in Lush Mountainous Area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1771-1781. DOI: 10.13203/j.whugis20200044
Citation: WANG Xuan, FAN Xuanmei, YANG Fan, DONG Xiujun. Remote Sensing Interpretation Method of Geological Hazards in Lush Mountainous Area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1771-1781. DOI: 10.13203/j.whugis20200044

Remote Sensing Interpretation Method of Geological Hazards in Lush Mountainous Area

Funds: 

The Science Fund for Creative Research Groups of the National Natural Science Foundation of China 41521002

Land and Resources Research Program of Sichuan Province KJ-2018-22

More Information
  • Author Bio:

    WANG Xuan, postgraduate, specializes in geological hazards susceptibility and risk assessment. E-mail: 592228598@qq.com

  • Corresponding author:

    FAN Xuanmei, PhD, researcher. E-mail: fxm_cdut@qq.com

  • Received Date: February 13, 2020
  • Published Date: November 18, 2020
  •   Objectives  Traditional methods for remote sensing interpretation are difficult to identify historical geohazards covered by dense vegetation. For the purpose of interpreting the pre-seismic geohazards in the area of Panda Sea, Jiuzhaigou, and analyze the characteristics and distribution law, we propose a new methodology for geomorphologic identification masks and remote sensing interpretation regarding collapse, landslide and debris flow.
      Methods  Based on high-resolution LiDAR(light detection and ranging) data and data processing method of RRIM(red relief image map). RRIM is formed by the superposition of positive openness, negative openness and slope. RRIM method can supplement the shortcomings of the existing terrain visualization techniques, and apply the influence of environmental light to the terrain display, so that the visual interpretation can clearly identify the differences of landforms, and is more conducive to the identification and accurate interpretation of geohazards in mountainous areas.
      Results  Aiming at the Panda Sea area, which is the most seriously affected by Jiuzhaigou earthquake, the RRIM method is used to interpret the pre-seismic geohazards. A total of 311 pre-earthquake pre-seismic geohazards are interpreted and classified according to their characteristics, then are analyzed for spatial distribution.
      Conclusions  The verified results show that the high-resolution LiDAR data combined with RRIM is of great significance to improve the interpretation of geohazards of mountainous area with dense vegetation coverage, and provide data support for the geohazards prevention and risk assessment of the earthquake area in Jiuzhaigou.
  • [1]
    肖雁峰.机载激光雷达技术(LiDAR)在航测中的应用实践[J].铁道勘测与设计, 2010(4):19-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tdkcysj201004006

    Xiao Yanfeng. Application of LiDAR Technology in Aerial Survey[J]. Railway Survey and Design, 2010(4): 19-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tdkcysj201004006
    [2]
    王云南, 任光明, 王家柱, 等.滑坡遥感解译研究综述[J].西北水电, 2017(1):17-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbsd201701005

    Wang Yunnan, Ren Guangming, Wang Jiazhu, et al. Overview of Explanation and Interpretation on Landslide in Remote Sensing Image[J]. Northwest Hydropower, 2017(1):17-21 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbsd201701005
    [3]
    李政, 李永树, 郭加伟, 等.词袋特征支持下的无人机影像滑坡解译模型[J].遥感信息, 2016, 31(5):24-29 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxx201605004

    Li Zheng, Li Yongshu, Guo Jiawei, et al. An Automatic Landslide Interpretation Model of UAV Imagery Based on Bow [J]. Remote Sensing Information, 2016, 31(5):24-29 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxx201605004
    [4]
    马晓雪, 吴中海, 李家存. LiDAR技术在地质环境中的主要应用与展望[J].地质力学学报, 2016, 22(1):93-103 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201601010

    Ma Xiaoxue, Wu Zhonghai, Li Jiacun. LiDAR Technology and Its Application and Prospect in Geological Environment[J]. Journal of Geomechanics, 2016, 22(1):93-103 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201601010
    [5]
    侯峰. LiDAR详细介绍及其应用举例综述[J].科技广场, 2014(4):95-100 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjgc201404020

    Hou Feng. Thorough Introduction of LiDAR and Overview of Its Application[J]. Science Mosaic, 2014(4):95-100 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjgc201404020
    [6]
    张玉方, 程新文, 欧阳平, 等.机载LiDAR数据处理及其应用综述[J].工程地球物理学报, 2008, 5(1):119-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdqwlxb200801024

    Zhang Yufang, Cheng Xinwen, Ou Yangping, et al. The Data Processing Technology and Application of Airborne LiDAR[J]. Chinese Journal of Engineering Geophysics, 2008, 5(1):119-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdqwlxb200801024
    [7]
    Chigira M, Duan F, Yagi H, et al. Using an Airborne Laser Scanner for the Identification of Shallow Landslides and Susceptibility Assessment in an Area of Ignimbrite Overlain by Permeable Pyroclastics[J]. Landslides, 2004, 1(3):203-209 doi: 10.1007/s10346-004-0029-x
    [8]
    Haneberg W C, Creighton A L, Medley E W, et al. Use of LiDAR to Assess Slope Hazards at the Lihir Gold Mine, Papua New Guinea[R].International Conference on Landslide Risk Management, Vancouver, British Columbia, Canada, 2005
    [9]
    Glenn N F, Streutker D R, Chadwick D J, et al. Analysis of LiDAR-Derived Topographic Information for Characterizing and Differentiating Landslide Morphology and Activity[J].Geomorphology, 2006, 73(1/2):131-148 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0eda4a475cf66eeb0ba983e98c00096
    [10]
    Schulz W H. Landslide Susceptibility Revealed by LiDAR Imagery and Historical Records, Seattle, Washington[J].Engineering Geology, 2007, 89(1/2): 67-87 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6514660cea938fe013fb2b40deffa76d
    [11]
    Lin C W, Tseng C M, Tseng Y H, et al.Recognition of Large Scale Deep-Seated Landslides in Forest Areas of Taiwan Using High Resolution Topography[J].Journal of Asian Earth Sciences, 2013, 62:389-400 doi: 10.1016/j.jseaes.2012.10.022
    [12]
    沈永林, 李晓静, 吴立新.基于航空影像和LiDAR数据的海地地震滑坡识别研究[J].地理与地理信息科学, 2011(1):20-24 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj201101004

    Shen Yonglin, Li Xiaojing, Wu Lixin. Detection of Haiti Earthquake Induced Landslides from Aerial Images and LiDAR Data[J]. Geography and Geo-Information Science, 2011(1):20-24 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj201101004
    [13]
    陈刚, 陈伟涛, 李显巨.基于机载LiDAR技术的滑坡识别参数提取方法[J].地理空间信息, 2013(6):16-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkjxx201306002

    Chen Gang, Chen Weitao, Li Xianju. Extraction Method of Landslide Identification Parameters Based on Airborne LiDAR Technology[J]. Geospatial Information, 2013(6):16-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkjxx201306002
    [14]
    聂晶.基于LiDAR点云数据的滑坡灾害研究: 以泰宁山体滑坡为例[D].南昌: 东华理工大学, 2017

    Nie Jing. Research on Landslide Disaster Based on LiDAR Point Cloud Data: Taking the Case of Taining Landslide Disaster[D].Nanchang: Donghua University of Technology, 2017
    [15]
    赖自力, 陈建平, 向杰, 等.分形理论和LiDAR数据的滑坡识别[J].测绘科学, 2018, 43(6):112-117 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201806019

    Lai Zili, Chen Jianping, Xiang Jie, et al. Landslide Extraction Based on Fractal and LiDAR Data[J]. Science of Surveying and Mapping, 2018, 43(6):112-117 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201806019
    [16]
    Fan X, Scaringi G, Xu Q, et al. Coseismic Landslides Triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou Earthquake (Sichuan, China): Factors Controlling Their Spatial Distribution and Implications for the Seismogenic Blind Fault Identification[J]. Landslides, 2018, 15(5): 967-983 doi: 10.1007/s10346-018-0960-x
    [17]
    戴岚欣, 许强, 范宣梅, 等. 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J].工程地质学报, 2017, 25(4): 1 151-1 164 http://www.cnki.com.cn/Article/CJFDTotal-GCDZ201704030.htm

    Dai Lanxin, Xu Qiang, Fan Xuanmei, et al. A Preliminary Study on Spatial Distribution Patterns of Landslides Triggered By Jiuzhaigou Earthquake in Sichuan on August 8th, 2017 and Their Susceptibility Assessment[J]. Journal of Engineering Geology, 2017, 25(4):1 151-1 164 http://www.cnki.com.cn/Article/CJFDTotal-GCDZ201704030.htm
    [18]
    徐茂其, 张大泉, 周晓骆, 等.九寨沟流域突发性重力侵蚀初步研究[J].水土保持学报, 1991, 5(2):1-7 http://www.cnki.com.cn/Article/CJFD1991-TRQS199102000.htm

    Xu Maoqi, Zhang Daquan, Zhou Xiaoluo, et al. The Preliminary Study on the Explosive Soil Erosion in the Jiuzhaigou Catchment of Sichuan, China[J]. Journal of Soil and Water Conservation, 1991, 5(2):1-7 http://www.cnki.com.cn/Article/CJFD1991-TRQS199102000.htm
    [19]
    丁照宇.利用遥感图像揭示九寨沟旅游区的不良地质现象[J].遥感信息, 1989(3):24-26 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004850921

    Ding Zhaoyu. Using Remote Sensing Images to Reveal the Adverse Geological Phenomena in Jiuzhaigou Tourist Area[J]. Remote Sensing Information, 1989(3):24-26 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004850921
    [20]
    王景荣, 田昭一, 曾思伟.九寨沟崩塌和泥石流的历史、现实和未来[J].水土保持通报, 1985(1):75-77 http://www.cnki.com.cn/Article/CJFDTotal-STTB198501020.htm

    Wang Jingrong, Tian Zhaoyi, Zeng Siwei, et al. History, Reality and Future of Jiuzhaigou Collapse and Debris Flow[J]. Journal of Soil and Water Conservation, 1985 (1): 75-77 http://www.cnki.com.cn/Article/CJFDTotal-STTB198501020.htm
    [21]
    中国科学院青藏高原综合考察队.九寨沟泥石流的考察纪要[J].水土保持通报, 1985(1):75-77 http://www.cnki.com.cn/Article/CJFDTotal-STTB198501021.htm

    Comprehensive Investigation Team of Qinghai Tibet Plateau of Chinese Academy of Sciences. Investigation Summary of Debris Flow in Jiuzhaigou[J]. Journal of Soil and Water Conservation, 1985(1): 75-77 http://www.cnki.com.cn/Article/CJFDTotal-STTB198501021.htm
    [22]
    柳素清, 唐邦兴, 崔鹏, 等.九寨沟泥石流治理及其效益[M].成都:四川科学技术出版社, 1998

    Liu Suqing, Tang Bangxing, Cui Peng, et al. Debris Flow Control and Its Benefits in Jiuzhaigou[M]. Chengdu: Sichuan Science and Technology Press, 1998
    [23]
    蓝振江, 蔡红霞, 曾涛, 等.九寨沟主要植物群落生物量的空间分布[J].应用与环境生物学报, 2004, 10(3):299-306 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyyhjswxb200403009

    Lan Zhenjiang, Cai Hongxia, Zeng Tao, et al. Biomass Distribution of the Major Plant Communities in Jiuzhaigou Valley, Sichuan[J]. Chinese Journal of Applied and Environmental Biology, 2004, 10(3):299-306 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyyhjswxb200403009
    [24]
    Chiba T, Kaneta S, Suzuki Y. Red Relief Image Map: New Visualization Method for Three Dimensional Data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37(B2): 1 071-1 076 http://www.researchgate.net/publication/237517308_Red_relief_image_map_New_visualization_method_for_three_dimensional_data
    [25]
    Yokoyama R, Shirasawa M, Pike R J. Visualizing Topography by Openness: A New Application of Image Processing to Digital Elevation Models[J]. Photogrammetric Engineering and Remote Sensing, 2002, 68(3): 257-266 http://dialnet.unirioja.es/servlet/articulo?codigo=673843
    [26]
    张玲, 杨晓平, 魏占玉, 等.三维数据的二维可视化方法综述[J].地震地质, 2014, 36(1):275-284 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201401023

    Zhang Ling, Yang Xiaoping, Wei Zhanyu, et al. Overview of Visualization Methods of Three Dimensional Topographic Data[J].Seismology and Geology, 2014, 36(1):275-284 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201401023
    [27]
    Görüm T. Landslide Recognition and Mapping in a Mixed Forest Environment from Airborne LiDAR Data[J]. Engineering Geology, 2019, 258: 105155 doi: 10.1016/j.enggeo.2019.105155
    [28]
    许冲, 戴福初, 陈剑, 等.汶川Ms 8.0地震重灾区次生地质灾害遥感精细解译[J].遥感学报, 2009, 13(4):745-762 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200904016

    Xu Chong, Dai Fuchu, Chen Jian, et al. Identification and Analysis of Secondary Geological Hazards Triggered by a Magnitude 8.0 Wenchuan Earthquake[J]. Journal of Remote Sensing, 2009, 13(4):745-762 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200904016
    [29]
    刘广润, 晏鄂川, 练操.论滑坡分类[J].工程地质学报, 2002, 10(4):339-342 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200204001

    Liu Guangrun, Yan Echuan, Lian Cao. Discussion on Classification of Landslides[J]. Journal of Engineering Geology, 2002, 10(4):339-342 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200204001
    [30]
    李为乐, 许强, 陆会燕, 等.大型岩质滑坡形变历史回溯及其启示[J].武汉大学学报∙信息科学版, 2019, 44(7):1 043-1 053 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201907011

    Li Weile, Xu Qiang, Lu Huiyan, et al. Tracking the Deformation History of Large-Scale Rocky Landslides and Its Enlightenment[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):1 043-1 053 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201907011
    [31]
    杨桄, 刘湘南.遥感影像解译的研究现状和发展趋势[J].国土资源遥感, 2011, 16(2):7-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg200402002

    Yang Quan, Liu Xiangnan. The Present Research Condition and Development Trend of Remotely Sensed Imagery Interpretation[J]. Remote Sensing of Land and Resources, 2011, 16(2):7-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg200402002
    [32]
    Cruden D M, Varnes D J. Landslides: Investigation and Mitigation[R].U.S.National Academy of Sciences, Washington D C, USA, 1996
    [33]
    黄润秋, 李为乐. "5∙12"汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报, 2008, 27(12):2 585-2 592 http://www.oalib.com/paper/1485382

    Huang Runqiu, Li Weile. Research on Development and Distribution Rules of Geohazards Induced by Wenchuan Earthquake on 12th May, 2008 [J]. Journal of Rock Mechanics and Engineering, 2008, 27(12):2 585-2 592 http://www.oalib.com/paper/1485382
  • Related Articles

    [1]WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094
    [2]FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036
    [3]DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842
    [4]FU Zhongliang, LIU Siyuan. MR-tree with Voronoi Diagrams for Parallel Spatial Queries[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1490-1494.
    [5]HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49.
    [6]ZHANG Lu, GAO Zhihong, LIAO Mingsheng, LI Xinyan. Estimating Urban Impervious Surface Percentage with Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1212-1216.
    [7]HAN Tao, XU Xiaotao, XIE Yaowen. Automated Construction and Classification of Decision Tree Classifier Based on Single-Temporal MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 191-194.
    [8]LIAO Mingsheng, JIANG Liming, LIN Hui, YANG Limin. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1099-1102.
    [9]YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289.
    [10]GUO Jing, LIU Guangjun, DONG Xurong, GUO Lei. 2-Level R-tree Spatial Index Based on Spatial Grids and Hilbert R-tree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1084-1088.
  • Cited by

    Periodical cited type(13)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 何毅,姚圣,陈毅,闫浩文,张立峰. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版). 2025(03): 483-496 .
    3. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    4. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    5. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    6. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    9. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    10. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    11. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    12. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    13. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return