WANG Wenqi, LI Zongchun, FU Yongjian, HE Hua, XIONG Feng. A Multi-scale Adaptive Slope Filtering Algorithm for Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 438-446. DOI: 10.13203/j.whugis20200016
Citation: WANG Wenqi, LI Zongchun, FU Yongjian, HE Hua, XIONG Feng. A Multi-scale Adaptive Slope Filtering Algorithm for Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 438-446. DOI: 10.13203/j.whugis20200016

A Multi-scale Adaptive Slope Filtering Algorithm for Point Cloud

More Information
  • Author Bio:

    WANG Wenqi, postgraduate, specializes in data processing of LiDAR point cloud. E-mail: wenqi_xd@163.com

  • Corresponding author:

    LI Zongchun, PhD, professor. E-mail: 13838092876@139.com

  • Received Date: January 14, 2020
  • Published Date: March 04, 2022
  •   Objectives  Point cloud filtering is the basic work of extracting ground information, generating digital elevation model and other terrain products. The slope filtering algorithm for point cloud is simple and easy to implement. In order to further improve the adaptability of slope filtering algorithm, a multi-scale adaptive slope filtering algorithm for point cloud is proposed.
      Methods  The idea of multi-scale pseudo-grid is used for reference, and the filtering threshold of grid is determined by combining k-means clustering and normal distribution adaptive to realize multi-scale adaptive point cloud slope filtering. Firstly, a pseudo-grid is introduced to divide the point cloud on the basis of data pre-processing. Then, the slope angle of grid points is calculated one by one using distance weighting, and the threshold value is determined adaptively by combining k-means clustering and normal distribution. Finally, the multi-scale strategy is used to reduce the grid size step by step to achieve fine filtering of point cloud data.
      Results  The algorithm is verified using two point cloud data sets with different densities. Compared with the two slope filtering algorithms and the classical algorithms of International Society for Photogrammetry and Remote Sensing, the experimental results show that this algorithm has better overall fitting results and higher stability.
      Conclusions  Through the above experiments, the proposed method can be applied to the filtering of point cloud data in different scenes.
  • [1]
    杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10): 1509-1516 doi: 10.11947/j.AGCS.2017.20170351

    Yang Bisheng, Liang Fuxun, Huang Ronggang. Progress, Challenges and Perspectives of 3D Li-DAR Point Cloud Processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1509-1516 doi: 10.11947/j.AGCS.2017.20170351
    [2]
    黄先锋, 李卉, 王潇, 等. 机载LiDAR数据滤波方法评述[J]. 测绘学报, 2009, 38(5): 466-469 doi: 10.3321/j.issn:1001-1595.2009.05.014

    Huang Xianfeng, Li Hui, Wang Xiao, et al. Filter Algorithms of Airborne LiDAR Data: Review and Prospects[J]. Acta Geodaetica et Cartographica Si-nica, 2009, 38(5): 466-469 doi: 10.3321/j.issn:1001-1595.2009.05.014
    [3]
    Vosselman G. Slope Based Filtering of Laser Altime-try Data[J]. International Archives of Photogramme-try and Remote Sensing, 2000, 33: 678-684
    [4]
    Sithole G. Filtering of Laser Altimetry Data Using a Slope Adaptive Filter[J]. International Archives of Photogrammetry and Remote Sensing, 2001, 34: 203-210
    [5]
    张皓, 贾新梅, 张永生, 等. 基于虚拟网格与改进坡度滤波算法的机载LiDAR数据滤波[J]. 测绘科学技术学报, 2009, 26(3): 224-227 doi: 10.3969/j.issn.1673-6338.2009.03.018

    Zhang Hao, Jia Xinmei, Zhang Yongsheng, et al. Filtering of Airborne LiDAR Data Based on Pseudo-Grid Concept and Modified Slope Filtering Algorithm[J]. Journal of Geomatics Science and Technology, 2009, 26(3): 224-227 doi: 10.3969/j.issn.1673-6338.2009.03.018
    [6]
    Susaki J. Adaptive Slope Filtering of Airborne Li-DAR Data in Urban Areas for Digital Terrain Model (DTM) Generation[J]. Remote Sensing, 2012, 4(6): 1804-1819 doi: 10.3390/rs4061804
    [7]
    Rashidi P, Rastiveis H. Extraction of Ground Points from LiDAR Data Based on Slope and Progressive Window Thresholding (SPWT)[J]. Earth Observation and Geomatics Engineering, 2018, 2(1): 36-44
    [8]
    孙崇利, 苏伟, 武红敢, 等. 改进的多级移动曲面拟合激光雷达数据滤波方法[J]. 红外与激光工程, 2013, 42(2): 349-354 doi: 10.3969/j.issn.1007-2276.2013.02.014

    Sun Chongli, Su Wei, Wu Honggan, et al. Improved Hierarchical Moving Curved Filtering Method of Li-DAR Data[J]. Infrared and Laser Engineering, 2013, 42(2): 349-354 doi: 10.3969/j.issn.1007-2276.2013.02.014
    [9]
    朱笑笑, 王成, 习晓环, 等. 多级移动曲面拟合的自适应阈值点云滤波方法[J]. 测绘学报, 2018, 47(2): 153-160 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201802004.htm

    Zhu Xiaoxiao, Wang Cheng, Xi Xiaohuan, et al. Hie-rarchical Threshold Adaptive for Point Cloud Filter Algorithm of Moving Surface Fitting[J]. Acta Geo-daetica et Cartographica Sinica, 2018, 47(2): 153-160 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201802004.htm
    [10]
    李鹏程, 徐青, 邢帅, 等. 利用波形信息的加权曲面拟合LiDAR点云滤波[J]. 武汉大学学报∙信息科学版, 2018, 43(3): 420-427 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201803014.htm

    Li Pengcheng, Xu Qing, Xing Shuai, et al. Weighted Curve Fitting Filtering Method Based on Full-Waveform LiDAR Data[J]. Geomatics and In-formation Science of Wuhan University, 2018, 43 (3): 420-427 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201803014.htm
    [11]
    Pingel T J, Clarke K C, McBride W A. An Im-proved Simple Morphological Filter for the Terrain Classification of Airborne LiDAR Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 77: 21-30 doi: 10.1016/j.isprsjprs.2012.12.002
    [12]
    卢秀山, 刘如飞, 田茂义, 等. 利用改进的数学形态法进行车载激光点云地面滤波[J]. 武汉大学学报∙信息科学版, 2014, 39 (5): 514-519 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201405002.htm

    Lu Xiushan, Liu Rufei, Tian Maoyi, et al. Ground Filtering of Vehicle-Borne Laser Point Cloud Based on Adaptive Mathematical Morphology[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 514-519 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201405002.htm
    [13]
    王竞雪, 张雪洋, 洪绍轩, 等. 结合形态学和TIN三角网的机载LiDAR点云滤波算法[J]. 测绘科学, 2019, 44(5): 151-156 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201905023.htm

    Wang Jingxue, Zhang Xueyang, Hong Shaoxuan, et al. Aerial LiDAR Point Cloud Filtering Algorithm Combining Mathematical Morphology and TIN[J]. Science of Surveying and Mapping, 2019, 44(5): 151-156 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201905023.htm
    [14]
    Zhang W M, Qi J B, Wan P, et al. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation[J]. Remote Sensing, 2016, 8(6): 501 doi: 10.3390/rs8060501
    [15]
    Wan P, Zhang W M, Skidmore A K, et al. A Sim-ple Terrain Relief Index for Tuning Slope-Related Parameters of LiDAR Ground Filtering Algorithms [J]. ISPRS Journal of Photogrammetry and Re-mote Sensing, 2018, 143: 181-190 doi: 10.1016/j.isprsjprs.2018.03.020
    [16]
    Sithole G, Vosselman G. ISPRS Comparison of Fil-ters[R]. Delft: ISPRS Commission Ⅲ, Working Group 3, 2003
    [17]
    Bartels M, Wei H. Threshold-Free Object and Ground Point Separation in LiDAR Data[J]. Pat-tern Recognition Letters, 2010, 31(10): 1089-1099 doi: 10.1016/j.patrec.2010.03.007
    [18]
    范金城, 梅长林. 数据分析[M]. 2版. 北京: 科学出版社, 2010

    Fan Jincheng, Mei Changlin. Data Analysis[M]. 2nd ed. Beijing: Science Press, 2010
    [19]
    马得利, 孙永康, 杨建英, 等. 基于无人机遥感技术的废弃采石场立地条件类型划分[J]. 北京林业大学学报, 2018, 40 (9): 90-97 https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY201809010.htm

    Ma Deli, Sun Yongkang, Yang Jianying, et al. Site Condition Classification Based on Remote Sensing Technology of Unmanned Aerial Vehicle in Aban-doned Quarry[J]. Journal of Beijing Forestry Uni-versity, 2018, 40(9): 90-97 https://www.cnki.com.cn/Article/CJFDTOTAL-BJLY201809010.htm
    [20]
    Axelsson P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33: 110-117
    [21]
    Elmqvist M, Jungert E, Lantz F, et al. Terrain Modelling and Analysis Using Laser Scanner Data [J]. International Archives of Photogrammetry and Remote Sensing, 2001, 34: 219-227
    [22]
    Brovelli M A, Cannata M, Longoni U M. Managing and Processing LiDAR Data Within GRASS[C]// The Open Source GIS-GRASS Users Conference, Trento, Italy, 2002
    [23]
    Wack R, Wimmer A. Digital Terrain Models from Airborne Laser Scanner Data: A Grid Based Ap-proach[J]. International Archives of Photogramme-try and Remote Sensing, 2002, 35: 293-296
    [24]
    Pfeifer N, Reiter T, Briese C, et al. Interpolation of High Quality Ground Models from Laser Scanner Data in Forested Areas[J]. International Archives of Photogrammetry and Remote Sensing, 1999, 32: 31-36
    [25]
    Sohn G, Dowman I. Terrain Surface Reconstruc-tion by the Use of Tetrahedron Model with the MDL Criterion[J]. International Archives of Photogram-metry and Remote Sensing, 2002, 35: 336-344
    [26]
    Roggero M. Airborne Laser Scanning: Clustering in Raw Data[J]. International Archives of Photogram-metry and Remote Sensing, 2001, 34: 227-232
  • Related Articles

    [1]GAO Xiang, PANG Xiaoping, JI Qing. Spatiotemporal Variation of Sea Ice Freeboard in the Antarctic Weddell Sea Based on CryoSat-2 Altimeter Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 125-132. DOI: 10.13203/j.whugis20180504
    [2]DONG Yusen, Chang Hsing-Chung, ZHANG Kui, MA Jiao, WANG Shu, SUN Pan. CryoSat-2 SARIn Interferometric Processing for DEM Generation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 803-809. DOI: 10.13203/j.whugis20150568
    [3]QIANG Qiang, ZHOU Chunxia, LIAO Mingsheng, ZHAO Qiuyang, WANG Zemin. Elevation Change Along the Expedition Route in PANDA Transection of Antarctica from Cryosat-2[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1445-1449. DOI: 10.13203/j.whugis20150271
    [4]JI Qing, PANG Xiaoping, ZHAO Xi, CHENG Zian. Comparison of Sea Ice Thickness Retrieval Algorithms from CryoSat-2 Satellite Altimeter Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1467-1472. DOI: 10.13203/j.whugis20150279
    [5]ZHANG Shengkai, XIAO Feng, LI Fei, E Dongchen, CHENG Xiao. DEM Development and Precision Analysis in Two Local Areas of Antarctica, Using CryoSat-2 Altimetry Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1434-1439. DOI: 10.13203/j.whugis20150274
    [6]GUO Jiming, WANG Wei, CHAO Baichong. Modeling and Realization of GPS IF Signal[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 472-474.
    [7]LIU Youwen, JIANG Weiping, E Dongchen, ZHOU Xiaohui. Ocean Loading Tides Corrections of GPS Stations in Antarctica[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 899-901.
    [8]DANG Yamin, CHENG Chuanlu, CHEN Junyong, ZHANG Peng. GPS Data Processing of the 2005 Qomolangma Height Surveying[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 297-300.
    [9]ZHOU Hongjin, XU Jiangning, MA Heng, BIAN Shaofeng~. Research on Carrier Heading Determination Based on GPS and TPS[J]. Geomatics and Information Science of Wuhan University, 2005, 30(6): 510-513.
    [10]HAN Baomin, OU Jikun QU Guoqing, . GPS Observation Simulation[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 246-250.
  • Cited by

    Periodical cited type(1)

    1. 陈浩,许月萍,郑超昊,郭玉雪. 厄尔尼诺-南方涛动影响下月尺度水文模型参数可移植性. 同济大学学报(自然科学版). 2023(01): 75-82 .

    Other cited types(1)

Catalog

    Article views (1706) PDF downloads (255) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return