CHEN Bo, SHE Jiangfeng, TAN Junzhong, MA Jingsong, WU Guoping. Research Progress on Simplification of Building Models in 3D Scenes[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1429-1437. DOI: 10.13203/j.whugis20190470
Citation: CHEN Bo, SHE Jiangfeng, TAN Junzhong, MA Jingsong, WU Guoping. Research Progress on Simplification of Building Models in 3D Scenes[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1429-1437. DOI: 10.13203/j.whugis20190470

Research Progress on Simplification of Building Models in 3D Scenes

Funds: 

The National Natural Science Foundation of China 41871293

The National Natural Science Foundation of China 41371365

More Information
  • Author Bio:

    CHEN Bo, postgraduate, specializes in 3D building simplification and streaming. E-mail: MG1827052@smail.nju.edu.cn

  • Corresponding author:

    SHE Jiangfeng, PhD, associate professor. E-mail: gisjf@nju.edu.cn

  • Received Date: December 24, 2019
  • Published Date: September 04, 2020
  • 3D building models are widely used in geographic information systems, virtual reality, and building information models. Reasonable geometric simplification of the 3D building model can reduce its structural complexity and data size while maintaining the consistency of visual effects, thereby reducing the pressure of graphics rendering and improving the experience of scene interaction. The simplification of 3D building model is one of the hot issues in the field of virtual geographic environment. This paper introduces the problems in 3D building model simplification, analyzes the characteristics of existing simplification methods and classifies them from two perspectives. From the perspective of geometric features, the methods are divided into simplification based on projection features, symbolic expression, and structural features; from the perspective of multi-factor constraints, the methods are divided into simplification under texture constraint, semantic constraint and user's understanding and perception constraint. The advantages and disadvantages of different simplified methods are discussed and summarized. With the goal of building a continuous level of detail model, the development direction of 3D building model simplification research is discussed.
  • [1]
    林珲, 游兰, 胡传博, 等.时空大数据时代的地理知识工程展望[J].武汉大学学报·信息科学版, 2018, 43(12): 2 205-2 211 doi: 10.13203/j.whugis20180318

    Lin Hui, You Lan, Hu Chuanbo, et al. Prospect of Geo-Knowledge Engineering in the Era of Spatio-Temporal Big Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 205-2 211 doi: 10.13203/j.whugis20180318
    [2]
    闾国年.地理分析导向的虚拟地理环境:框架、结构与功能[J].中国科学:地球科学, 2011(4): 129-141 http://www.cnki.com.cn/Article/CJFDTotal-JDXK201104012.htm

    Lü Guonian. Geographical Analysis-Oriented Virtual Geographic Environment: Framework, Structure, and Function[J].Science China Press:Earth Science, 2011(4): 129-141 http://www.cnki.com.cn/Article/CJFDTotal-JDXK201104012.htm
    [3]
    余明, 过静珺.三维仿真虚拟现实技术在城市规划中的应用[J].测绘科学, 2004, 29(3): 52-54 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx200403017

    Yu Ming, Guo Jingjun. The Technology of 3D Simulation Virtual Reality Applied in City Planning[J]. Science of Surveying and Mapping, 2004, 29(3): 52-54 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx200403017
    [4]
    张立强.构建三维数字地球的关键技术研究[D].北京: 中国科学院研究生院, 2004 http://cdmd.cnki.com.cn/article/cdmd-80070-2004097763.htm

    Zhang Liqiang.Research on Key Technologies for Building a Three-dimensional Digital Earth[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2004 http://cdmd.cnki.com.cn/article/cdmd-80070-2004097763.htm
    [5]
    李德仁, 龚健雅, 邵振峰.从数字地球到智慧地球[J].武汉大学学报·信息科学版, 2010, 35(2): 127-132 http://ch.whu.edu.cn/article/id/836

    Li Deren, Gong Jianya, Shao Zhenfeng. From Digital Earth to Smart Earth[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 127-132 http://ch.whu.edu.cn/article/id/836
    [6]
    张社荣, 顾岩, 张宗亮.水利水电行业中应用三维设计的探讨[J].水力发电学报, 2008, 27(3): 65-69 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slfdxb200803013

    Zhang Sherong, Gu Yan, Zhang Zongliang. Discussion on the Application of the Three-dimensional Design for Hydraulic Engineering[J]. Journal of Hydroelectric Engineering, 2008, 27(3): 65-69 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slfdxb200803013
    [7]
    Thiemann F. Generalization of 3D Building Data[J]. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2002, 34(4): 286-290
    [8]
    Chen M, Sheng Y H, Wen Y N, et al. Virtual Geographic Environments Oriented 3D Visualization System[J]. Journal of System Simulation, 2008, 20(19): 7-24 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1191/030913201680191763
    [9]
    朱庆, 李世明, 胡翰, 等.面向三维城市建模的多点云数据融合方法综述[J].武汉大学学报·信息科学版, 2018, 43(12): 1 962-1 971 doi: 10.13203/j.whugis20180109

    Zhu Qing, Li Shiming, Hu Han, et al. Multiple Point Clouds Data Fusion Method for 3D City Modeling[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 962-1 971 doi: 10.13203/j.whugis20180109
    [10]
    Jiang S, Yang B, Sun X. Multi-resolution Representation of 3D Complex Building Models with Features Preservation[C]. The 19th International Conference on Geoinformatics, Shanghai, China, 2011
    [11]
    朱庆, 龚俊, 杜志强, 等.三维城市模型的多细节层次描述方法[J].武汉大学学报·信息科学版, 2005, 30(11): 965-969 http://ch.whu.edu.cn/article/id/2315

    Zhu Qing, Gong Jun, Du Zhiqiang, et al. LoDs Description of 3D City Model[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 965-969 http://ch.whu.edu.cn/article/id/2315
    [12]
    Clark J H. Hierarchical Geometric Models for Visible-Surface Algorithms[J]. Communications of the ACM, 1976, 19(10): 547-554 doi: 10.1145/360349.360354
    [13]
    Biljecki F, Ledoux H, Stoter J, et al. Formalisation of the Level of Detail in 3D City Modelling[J]. Computers, Environment and Urban Systems, 2014, 48: 1-15 doi: 10.1016/j.compenvurbsys.2014.05.004
    [14]
    Kada M. Automatic Generalization of 3D Building Models[J]. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2002, 34(4): 243-248 http://www.researchgate.net/publication/2548937_Generalization_of_3D_Building_Data
    [15]
    何正伟, 吴华意, 陈静.基于Internet的大规模城市建筑三维场景可视化研究[J].系统仿真学报, 2009, 21(10): 2 965-2 970 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtfzxb200910040

    He Zhengwei, Wu Huayi, Chen Jing. Research on Browsing Large Scale 3D Scene of City Buildings over Internet[J]. Journal of System Simulation, 2009, 21(10): 2 965-2 970 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtfzxb200910040
    [16]
    Donkers S, Ledoux H, Zhao J, et al. Automatic Conversion of IFC Datasets to Geometrically and Semantically Correct CityGML LOD3 Buildings[J]. Transactions in GIS, 2016, 20(4): 547-569 doi: 10.1111/tgis.12162
    [17]
    Stadler A, Kolbe T H. Spatio-Semantic Coherence in the Integration of 3D City Models[C]. The 5th International ISPRS Symposium on Spatial Data Quality, Enschede, The Netherlands, 2007
    [18]
    Chang R, Butkiewicz T, Ziemkiewicz C, et al. Legible Simplification of Textured Urban Models[J]. IEEE Computer Graphics and Applications, 2008, 28(3): 27-36 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aec658e58b6c2db3925edf086eec1e5e
    [19]
    Hoppe H, Derose T, Duchamp T, et al. Mesh Optimization[R]. Washington : Washington Univ Seattle Dept of Computer Science and Engineering, 1994
    [20]
    Hoppe H.Progressive Meshes[C].The 23rd Annual Conference on Computer Graphics and Interactive Techniques, New York, USA, 1996
    [21]
    Hoppe H. View-Dependent Refinement of Progressive Meshes[C].SIGGRAPH, Los Angeles, USA, 1997
    [22]
    Garland M, Heckbert P S. Surface Simplification Using Quadric Error Metrics[C]. The 24th Annual Conference on Computer Graphics and Interactive Techniques, New York, USA, 1997
    [23]
    Castelló P, Sbert M, Chover M, et al. Viewpoint-Driven Simplification Using Mutual Information[J]. Computers & Graphics, 2008, 32(4): 451-463 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6c242e9990e23e9f7931c3d6ab2d139
    [24]
    González C, Castelló P, Chover M, et al. Simplification Method for Textured Polygonal Meshes Based on Structural Appearance[J]. Signal Image & Video Processing, 2013, 7(3): 479-492 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a7b612731fc4566028e4be07f24d500e
    [25]
    Hoppe H. New Quadric Metric for Simplifying Meshes with Appearance Attributes[C]. Visualization'99 Conference, San Francisco, USA, 1999
    [26]
    Lindstrom P, Turk G. Image-Driven Simplification[J]. ACM Transactions on Graphics, 2000, 19(3): 204-241 doi: 10.1145/353981.353995
    [27]
    Williams N, Luebke D, Cohen J D, et al. Perceptually Guided Simplification of Lit, Textured Meshes[C]. The 2003 Symposium on Interactive 3D Graphics, New York, USA, 2003
    [28]
    Rossignac J, Borrel P. Multi-resolution 3D Approximations for Rendering Complex Scenes[M]//Falcidieno B. Modeling in Computer Graphics. Berlin, Heidelberg: Springer, 1993: 455-465
    [29]
    Low K L, Tan T S. Model Simplification Using Vertex-Clustering[C]. The 1997 Symposium on Interactive 3D Graphics, New York, USA, 1997
    [30]
    Luebke D, Erikson C. View-Dependent Simplification of Arbitrary Polygonal Environments[C]. The 24th Annual Conference on Computer Graphics and Interactive Techniques, New York, USA, 1997
    [31]
    Sester M. Optimization Approaches for Generalization and Data Abstraction[J]. International Journal of Geographical Information Science, 2005, 19(8-9): 871-897 doi: 10.1080/13658810500161179
    [32]
    Peter M, Haala N, Fritsch D. Preserving Ground Plan and Facade Lines for 3D Building Generalization[C]. ISPRS 2008, Beijing, China, 2008
    [33]
    Fan H, Meng L. A Three-step Approach of Simplifying 3D Buildings Modeled by CityGML[J]. International Journal of Geographical Information Science, 2012, 26(6): 1 091-1 107 doi: 10.1080/13658816.2011.625947
    [34]
    Anders K H. Level of Detail Generation of 3D Building Groups by Aggregation and Typification[C].The 22th International Cartographic Conference, Coruña, Spain, 2005
    [35]
    Jérme R, Bouville C, Gioia P. PBTree—A New Progressive and Hierarchical Representation for Network-Based Navigation in Urban Environments[J]. Annales Des Télécommunications, 2005, 60(11-12):1 394-1 421 doi: 10.1007/BF03219855
    [36]
    Mao B, Ban Y, Harrie L. A Multiple Representation Data Structure for Dynamic Visualisation of Generalised 3D City Models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(2): 198-208 doi: 10.1016/j.isprsjprs.2010.08.001
    [37]
    Xie J, Zhang L, Li J, et al. Automatic Simplification and Visualization of 3D Urban Building Models[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18: 222-231 doi: 10.1016/j.jag.2012.01.014
    [38]
    Royan J, Balter R, Bouville C. Hierarchical Representation of Virtual Cities for Progressive Transmission over Networks[C]. The 3rd International Symposium on 3D Data Processing, Visualization, and Transmission, Chapel Hill, NC, 2006
    [39]
    Burghardt D, Cecconi A. Mesh Simplification for Building Typification[J]. International Journal of Geographical Information Science, 2007, 21(3): 283-298 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/13658810600912323
    [40]
    Meng L, Forberg A. Chapter 11 - 3D Building Generalisation[M]// William A. Generalisation of Geographic Information: Cartographic Modeling and Applications. Amsterdam: Elsevier Science, 2007
    [41]
    Lin H, Chen M, Lu G, et al. Virtual Geographic Environments (VGEs): A New Generation of Geographic Analysis Tool[J]. Earth Science Reviews, 2013, 126(11): 74-84 http://www.sciencedirect.com/science/article/pii/S001282521300127X
    [42]
    危拥军.三维GIS数据组织管理及符号化表示研究[D].郑州: 信息工程大学, 2006

    Wei Yongjun. Research on Organization and Symbolization of 3D GIS Data[D]. Zhengzhou: Information Engineering University, 2006
    [43]
    Rainsford D, Mackaness W. Template Matching in Support of Generalisation of Rural Buildings[M]// Dianne E R. Advances in Spatial Data Handling.Berlin, Heidelberg: Springer, 2002
    [44]
    Thiemann F, Sester M. 3D-Symbolization Using Adaptive Templates[C]. ISPRS Technical Commission Symposium, Vienna, 2006
    [45]
    Kada M. Scale-Dependent Simplification of 3D Building Models Based on Cell Decomposition and Primitive Instancing[C]. International Conference on Spatial Information Theory, Berlin, 2007
    [46]
    Kada M. Generalization of 3D Building Models for Map-Like Presentations[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 2008
    [47]
    Xi D, Fan Q, Yao X A, et al. A Visual Salience Model for Wayfinding in 3D Virtual Urban Environments[J].Applied Geography, 2016, 75: 176-187 doi: 10.1016/j.apgeog.2016.08.014
    [48]
    Glander T, Döllner J. Abstract Representations for Interactive Visualization of Virtual 3D City Models[J]. Computers, Environment and Urban Systems, 2009, 33(5): 375-387 doi: 10.1016/j.compenvurbsys.2009.07.003
    [49]
    Glander T, Döllner J. Automated Cell Based Generalization of Virtual 3D City Models with Dynamic Landmark Highlighting[C]. The 11th ICA Workshop on Generalization and Multiple Representation, Monpellier, France, 2008
    [50]
    孙轩.基于结构的三维建筑物模型多分辨率表达方法[D].武汉: 武汉大学, 2013

    Sun Xuan. Structure Based Multi-resolution Representation Approach for 3D Building Models[D]. Wuhan: Wuhan University, 2013
    [51]
    Li Q, Sun X, Yang B, et al. Geometric Structure Simplification of 3D Building Models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 84: 100-113 doi: 10.1016/j.isprsjprs.2013.07.006
    [52]
    Xie J, Feng C C. An Integrated Simplification Approach for 3D Buildings with Sloped and Flat Roofs[J]. ISPRS International Journal of Geo-Information, 2016, 5(8): 128-145 doi: 10.3390/ijgi5080128
    [53]
    杨必胜, 姜少波.基于切割环分解的三维建筑物细节层次模型构造[J].测绘学报, 2011, 40(5): 575-581 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201105009.htm

    Yang Bisheng, Jiang Shaobo. Generating Levels of Detail of 3D Building Models Based on Cutting Loops Decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5): 575-581 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201105009.htm
    [54]
    Thiemann F, Sester M. Segmentation of Buildings for 3D-Generalisation[C]. The ICA Workshop on Generalisation and Multiple Representation, Leicester, UK, 2004
    [55]
    姜少波, 杨必胜, 孙轩.特征保持的三维复杂建筑物模型多分辨率表达[J].武汉大学学报·信息科学版, 2012, 37(8): 902-905 http://ch.whu.edu.cn/article/id/299

    Jiang Shaobo, Yang Bisheng, Sun Xuan. Multi-resolution Representation of 3D Complex Building Model with Features Preservation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 902-905 http://ch.whu.edu.cn/article/id/299
    [56]
    Geiger A, Benner J, Haefele K H. Generalization of 3D IFC Building Models[M]// Breunig M. 3D Geoinformation Science. Cham: Springer, 2015
    [57]
    Zhao J, Zhu Q, Du Z, et al. Mathematical Morphology-Based Generalization of Complex 3D Building Models Incorporating Semantic Relationships[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 68(3): 95-111 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d87d46a6b13d72738e5fcd7e531a4b0
    [58]
    Chen J, Li M, Li J. An Improved Texture-Related Vertex Clustering Algorithm for Model Simplification[J]. Computers & Geosciences, 2015, 83(10): 37-45 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e2654e81e85c50059b3d22f1c4f44d7
    [59]
    Chen J, Li J, Li M. Progressive Visualization of Complex 3D Models over the Internet[J]. Transactions in GIS, 2016, 20(6): 887-902 doi: 10.1111/tgis.12185
    [60]
    She J, Gu X, Tan J, et al. An Appearance‐Preserving Simplification Method for Complex 3D Building Models[J]. Transactions in GIS, 2019, 23(2): 275-293 doi: 10.1111/tgis.12518
    [61]
    Mao B, Ban Y. Generalization of 3D Building Texture Using Image Compression and Multiple Representation Data Structure[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79(5): 68-79 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4fe4e52c38f76810d28b5f388ec3b633
    [62]
    Liu P, Li C, Li F. Texture-Cognition-Based 3D Building Model Generalization[J]. ISPRS International Journal of Geo-Information, 2017, 6(9): 260-279 doi: 10.3390/ijgi6090260
    [63]
    Froese T, Grobler F, Ritzenthaler J, et al. Industry Foundation Classes for Project Management—A Trial Implementation[J]. ITcon, 1999, 4(11): 17-36 http://www.researchgate.net/publication/228762455_Industry_foundation_classes_for_project_management-a_trial_implementation
    [64]
    Gröger G, Kolbe T H, Nagel C, et al. OGC City Geography Markup Language (CityGML) Encoding Standard[OL]. https://mediatum.ub.tum.de/doc/1145755/file.pdf, 2014
    [65]
    赵君峤.复杂三维建筑物的多细节层次自动简化方法[D].武汉: 武汉大学, 2011 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201301029.htm

    Zhao Junqiao. Automatic Simplification Approach for the LoDs of Complex 3D Building Models[D]. Wuhan: Wuhan University, 2011 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201301029.htm
    [66]
    Fan H, Meng L, Jahnke M. Generalization of 3D Buildings Modelled by CityGML[M]// Monika Sester. Advances in GIScience. Berlin, Heidelberg: Springer, 2009: 387-405
    [67]
    He S, Martin J Y, Moreau G. Footprint-Based Generalization of 3D Building Groups at Medium Level of Detail for Multi-scale Urban Visualization[J]. International Journal on Advances in Software, 2016, 5(3/4):378-388 http://www.researchgate.net/publication/264653435_Footprint-Based_Generalization_of_3D_Building_Groups_at_Medium_Level_of_Detail_for_Multi-Scale_Urban_Visualization
    [68]
    Baig S U, Rahman A A.Generalization and Visualization of 3D Building Models in CityGML[M]//Jacynthe P. Progress and New Trends in 3D Geoinformation Sciences. Berlin, Heidelberg: Springer, 2013: 63-77
    [69]
    Du Z, Zhu Q, Zhao J. Perception-Driven Simplification Methodology of 3D Complex Building Models[C]. ISPRS2008, Beijing, 2008
    [70]
    Zhu Q, Zhao J, Du Z, et al. Quantitative Analysis of Discrete 3D Geometrical Detail Levels Based on Perceptual Metric[J]. Computers & Graphics, 2010, 34(1): 55-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4557621e0937107d0fe18e893ed2401e
    [71]
    Chang R, Butkiewicz T, Ziemkiewicz C, et al.Hierarchical Simplification of City Models to Maintain Urban Legibility[C]. SIGGRAPH Sketches, New York, USA, 2006
    [72]
    Yang L, Zhang L, Ma J, et al.Interactive Visualization of Multi-resolution Urban Building Models Considering Spatial Cognition[J]. International Journal of Geographical Information Science, 2011, 25(1): 5-24 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/13658816.2010.488239
    [73]
    Wang Y, Zhang L, Mathiopoulos P T, et al. A Gestalt Rules and Graph-Cut-Based Simplification Framework for Urban Building Models[J]. International Journal of Applied Earth Observations & GeoInformation, 2015, 35: 247-258 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0382f23a6be2202dad4454a56c427192
    [74]
    Zhang Liqiang, Deng Hao, Chen Dong, et al. A Spatial Cognition-Based Urban Building Clustering Approach and Its Applications[J]. International Journal of Geographical Information Science, 2013, 27(4): 721-740 doi: 10.1080/13658816.2012.700518
    [75]
    Biljecki F, Ledoux H, Stoter J. An Improved LOD Specification for 3D Building Models[J]. Computers Environment & Urban Systems, 2016, 59: 25-37 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8182e3029503dc3791f33bbd733739c0
    [76]
    Kada M, Wichmann A, Filippovska Y, et al. Animation Strategies for Smooth Transformations Between Discrete LoDs of 3D Building Models[C]. 23rd Congress of the ISPRS, Prague, Czech Republic, 2016
    [77]
    Brasebin M, Perret J, Mustière S, et al. Measuring the Impact of 3D Data Geometric Modeling on Spatial Analysis: Illustration with Skyview Factor[C]. Conference of the European COST Action TU0801 -Semantic Enrichment of 3D City Models for Sustainable Urban Development, Nantes, France, 2012
    [78]
    朱庆, 陈兴旺, 丁雨淋, 等.视觉感知驱动的三维城市场景数据组织与调度方法[J].西南交通大学学报, 2017(5): 869-876 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201705005

    Zhu Qing, Chen Xingwang, Ding Yuling, et al. Organization and Scheduling Method of 3D Urban Scene Data Driven by Visual Perception[J]. Journal of Southwest Jiaotong University, 2017(5): 869-876 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201705005
    [79]
    Kada M, Wichmann A, Hermes T. Smooth Transformations Between Generalized 3D Building Models for Visualization Purposes[J]. Cartography and Geographic Information Science, 2015, 42(4): 306-314 doi: 10.1080/15230406.2015.1039588
    [80]
    Ohori K A, Ledoux H, Stoter J. Storing a 3D City Model, Its Levels of Detail and the Correspondences Between Objects as a 4D Combinatorial Map[J].ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, 2(2): 1-8 http://adsabs.harvard.edu/abs/2015ISPAnII22....1A
    [81]
    Ohori K, Ledoux H, Biljecki F, et al. Modeling a 3D City Model and Its Levels of Detail as a True 4D Model[J]. ISPRS International Journal of Geo-Information, 2015, 4(3): 1 055-1 075 doi: 10.3390/ijgi4031055
  • Related Articles

    [1]NIU Lei, SONG Yiquan, ZHANG Hongmin, HOU Shaoyang. A Hilbert-Curve-Based R* Tree Index Optimized for Indoor Evacuation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1416-1421. DOI: 10.13203/j.whugis20160352
    [2]daijing, wu mingguang, zheng peibei, wang lei, cui dengj i, chen taisheng. an improved str-tree  spatial  index al gorithm based on hilbert-curve[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 777-781.
    [3]GUO Qingsheng, HUANG Yuanlin, ZHANG Liping. The Method of Curve Bend Recognition[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 596-599.
    [4]LEI Weigang, TONG Xiaohua, LIU Dajie. Data Process Methods of Line Feature Generalization Based on Curve Fit[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 896-899.
    [5]ZHAO Xiuping, Phil Green. Evaluating Acceptability Threshold and Weighting for Color Difference on Gloss Paper Reproduction[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 814-817.
    [6]WU Hehai. Multi-way Tree Structure Based on Curve Generalization Method[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 479-483.
    [7]WANG Xinzhou, TANG Zhong'an, CHEN Zhihui. εm-Band Based on Spline Fitting Function of Anomalous Curves in GIS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(1): 58-62.
    [8]TONG Xiaohua, LIU Dajie. Combined Adjustment Models of Road Curve Digitization in GIS[J]. Geomatics and Information Science of Wuhan University, 2001, 26(1): 64-69.
    [9]Wang Kongzheng, Wang Jiexian. An Algorithm for Error-band Determination of Curves in GIS[J]. Geomatics and Information Science of Wuhan University, 1999, 24(2): 142-144.
    [10]Liu Wenbao, Huang Youcai, Li Zonghua. On Measuring Complexity of Digital Curves and Separating Stochastic Part from Trend Movement of Digitizing Process[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 289-295.
  • Cited by

    Periodical cited type(26)

    1. 王盼龙,侯汶材,蒋光伟,王斌,程传录,李康. 顾及起算点误差的区域参考框架约束方法研究. 大地测量与地球动力学. 2024(01): 39-45 .
    2. 杨承志,张晓明,张鸽. 基于WLS-KF的UWB室内定位滤波算法研究. 电子测量与仪器学报. 2024(01): 25-33 .
    3. 姜颖颖,潘树国,孟骞,高旺. 基于鲁棒马氏距离统计量的多源融合抗差估计方法. 仪器仪表学报. 2024(02): 252-262 .
    4. 李圣英,孟骞,姜颖颖,王立辉. 故障修复增强的抗差滤波PDR/GNSS行人导航方法. 仪器仪表学报. 2024(02): 233-242 .
    5. 林雪原,刘丽丽,董云云,陈祥光,杨海利. 改进的GNSS/SINS组合导航系统自适应滤波算法. 武汉大学学报(信息科学版). 2023(01): 127-134 .
    6. 沈子涵,赵修斌,张闯,张良,刘鑫贤. 基于长短期记忆神经网络的自适应容错方法. 系统工程与电子技术. 2023(03): 831-838 .
    7. 刘原华,刘浩,牛新亮. 卫星导航自适应抗差滤波算法. 信息技术与信息化. 2022(06): 213-217 .
    8. 朱璐瑛,孙炜玮,刘成铭,孙兆玮. 多传感器组合导航系统的联邦UKF算法研究. 电子测量与仪器学报. 2022(07): 91-98 .
    9. 李霜,张敬霞,付贵,樊亚,张成龙. 小米8手机在城市环境下的单点定位精度研究. 导航定位学报. 2022(05): 160-169 .
    10. 代晓霁,李敏,徐天河,江楠,许艳. 复杂环境下的UWB/PDR紧组合定位方法. 导航定位学报. 2022(06): 18-26 .
    11. 蔡保杰,邵雷. 三段判别域与最小二乘拟合的抗差滤波算法. 系统工程与电子技术. 2021(05): 1346-1353 .
    12. 葛宝爽,张海,唐志坤. 基于新息异常检测的改进抗差自适应卡尔曼滤波算法. 导航定位与授时. 2020(01): 48-54 .
    13. 蔡保杰,邵雷,李正杰. 采用卡方检验和牛顿插值的抗差卡尔曼滤波新算法. 空军工程大学学报(自然科学版). 2020(01): 38-43 .
    14. 赵修斌,高超,庞春雷,张闯,王勇. BP神经网络辅助的缓变故障双阈值检测法. 控制与决策. 2020(06): 1384-1390 .
    15. 贺军义,杨丰,安葳鹏,尚家泽. 基于IGGⅢ方案的自适应渐消卡尔曼滤波器. 计算机工程与应用. 2020(14): 52-56 .
    16. 蔡保杰,邵雷,李佳伟,李正杰. 基于牛顿插值的抗差卡尔曼滤波算法. 导航定位学报. 2020(05): 49-56 .
    17. 刘韬,徐爱功,隋心,王长强. 新息向量的抗差Kalman滤波方法及其在UWB室内导航中的应用. 武汉大学学报(信息科学版). 2019(02): 233-239 .
    18. 陈国通,范圆圆,刘琪. 一种改进的无迹Kalman滤波在SINS/GPS组合导航中的应用. 宇航总体技术. 2019(01): 23-28 .
    19. 闫伟,牛小骥,旷俭. 光源编码+PDR组合的室内行人定位方法. 测绘通报. 2019(05): 7-11+54 .
    20. 张闯,赵修斌,庞春雷,冯波,高超. LS-SVM辅助的小幅值及缓变故障检测与容错方法. 中国惯性技术学报. 2019(03): 415-420 .
    21. 张建,喻国荣,潘树国,闫志跃,王彦恒. 基于卡方检验的GNSS观测值部分粗差抗差滤波算法. 仪器仪表学报. 2019(08): 102-109 .
    22. 刘韬,徐爱功,隋心. 基于自适应抗差卡尔曼滤波的UWB室内定位. 传感技术学报. 2018(04): 567-572 .
    23. 胡方强,吕涛,包亚萍. 改进的自适应Kalman滤波在SINS/GPS组合导航中的应用. 计算机工程与应用. 2018(05): 253-257+264 .
    24. 陶贤露,张小红,朱锋,肖佳敏. 一种基于加表零偏稳定性的GNSS/SINS组合导航异常探测方法. 武汉大学学报(信息科学版). 2018(07): 1078-1084 .
    25. 韩亚坤,文鸿雁,张艺航,陈冠宇,周吕. 基于卡方检验的抗差自适应Kalman滤波在变形监测中的应用. 大地测量与地球动力学. 2017(06): 604-608 .
    26. 邹敏,王国栋,刘超. 抗差自适应Kalman滤波及其在GNSS导航中的应用. 河北工程大学学报(自然科学版). 2016(03): 89-93 .

    Other cited types(24)

Catalog

    Article views (1997) PDF downloads (322) Cited by(50)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return