FANG Zhixiang, JIANG Yuxin, GUAN Fangli. Pedestrian Relative Positioning Method Based on Visible and Invisible Landmarks[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 601-609. DOI: 10.13203/j.whugis20190411
Citation: FANG Zhixiang, JIANG Yuxin, GUAN Fangli. Pedestrian Relative Positioning Method Based on Visible and Invisible Landmarks[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 601-609. DOI: 10.13203/j.whugis20190411

Pedestrian Relative Positioning Method Based on Visible and Invisible Landmarks

Funds: 

The National Natural Science Foundation of China 41771473

More Information
  • Author Bio:

    FANG Zhixiang, PhD, professor, specializes in pedestrian navigation, space-time GIS and spatio‐temporal modeling of urban big data. E-mail: zxfang@whu.edu.cn

  • Received Date: August 27, 2020
  • Published Date: May 04, 2021
  •   Objectives  Visible landmarks and invisible landmarks are important aids for research into and design of applications for some target route.
      Methods  We propose a pedestrian relative positioning method by fusing the visible landmarks and invisible landmarks, considering the data variance in different environ‐ ments and the pedestrian customary behavior during pedestrian positioning. Firstly, the invisible landmarks (e.g., magnetic changes, WiFi(wireless fidelity) updates) along the target route are detected by smartphone sensors, and the evidence framework is built by segmenting the target route with data characteristics of sen‐ sors. Then the salient visible landmarks could be detected, and the relative spatial relations between land‐ marks and panoramas could be derived based on their coordinates.Secondly, the probability values of pedes‐ trians in the road segments are respectively obtained, based on the similarly of the real‐time sensor data and sensor data from each of the evidence framework. And the relative azimuth relations of landmarks in the panoramas could be updated instantly. Finally, based on the Bayesian probability fusion method, the pedes‐ trian positioning results could be computed through fusing the results of sensors and panoramas.In detail, the probability values of pedestrians in the road segments will be recalculated based on the panoramic image results.
      Results  The experimental results demonstrate that the proposed method could improve the posi‐ tioning accuracy in a single pedestrian walking environment by fusing multi‐source data.In an environment with fewer sensor features, the accuracy achieved by this method increases by 12.78%, which is higher than that of the invisible landmark‐based method.
      Conclusions  The pedestrian relative positioning method not only solves the problems of sensor instability and less sensor features, but also improves the positioning accuracy.
  • [1]
    Ojeda L, Borenstein J. Non-GPS Navigation for Se-curity Personnel and First Responders[J]. Journal of Navigation, 2007, 60(3): 391-407 doi: 10.1017/S0373463307004286
    [2]
    Bahl P, Padmanabhan V N. RADAR: An In-building RF-based User Location and Tracking System[C}// IEEE Conference on Computer Communications, New York, USA, 2000
    [3]
    吴东金, 夏林元, 李倩霞, 等. 基于WiFi和WSN的室内外混合定位研究[J]. 地理空间信息, 2018, 16(12): 9, 17 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201812002.htm

    Wu Dongjin, Xia Linyuan, Li Qianxia, et al. Study on Indoor and Outdoor Mixed Localization Based on WiFi and WSN[J]. Geospatial Information, 2018, 16(12): 9, 17 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201812002.htm
    [4]
    潘丽杰, 徐本亮, 赵飞. 高精度超声波室内定位系统的设计[J]. 电子世界, 2018(18): 113-115 https://www.cnki.com.cn/Article/CJFDTOTAL-ELEW201818065.htm

    Pan Lijie, Xu Benliang, Zhao Fei. A Design of High Accuracy Ultrasonic Indoor Positioning System [J]. Electronics World, 2018(18): 113-115 https://www.cnki.com.cn/Article/CJFDTOTAL-ELEW201818065.htm
    [5]
    刘振远, 侯明祥, 方维维, 等. 基于低功耗蓝牙信标的室内定位方法研究[J]. 中国电子科学研究院学报, 2018, 13(5): 618-624 doi: 10.3969/j.issn.1673-5692.2018.05.022

    Liu Zhenyuan, Hou Mingxiang, Fang Weiwei, et al. Research on Indoor Positioning Method Based on Bluetooth Low Energy[J]. Journal of China Acade-my of Electronics and Information Technology, 2018, 13(5): 618-624 doi: 10.3969/j.issn.1673-5692.2018.05.022
    [6]
    Topak F, Pekericli M K, Tanyer A M. An Assess-ment of Bluetooth Low Energy Technology for In-door Localization[C]//The 33rd International CIB W78 IT in Construction Conference, Brisbane, Aus-tralia, 2016
    [7]
    Bargh M S, Groote R. Indoor Localization Based on Response Rate of Bluetooth Inquiries[C]// The First ACM International Workshop on Mobile Entity Localization and Tracking in GPS-Less Environ-ments, San Francisco, USA, 2008
    [8]
    Schmid F, Kuntzsch C, Winter S, et al. Situated Local and Global Orientation in Mobile You-AreHere Maps[C]//The 12th International Conference on Human Computer Interaction with Mobile Devi-ces and Services, Mobile Hci, New York, USA, 2010
    [9]
    Yaouanc J M L, Saux É, Claramunt C. A Semantic and Language-Based Representation of an Environ-mental Scene[J]. Geoinformatica, 2010, 14(3): 333-352 doi: 10.1007/s10707-010-0103-6
    [10]
    夏琳琳. 基于行人航位推算的行人导航系统算法研究[D]. 北京: 北京理工大学, 2016

    Xia Linlin. Pedestrian Navigation System Algorithm Reaearch Based on Pedestrian Dead-Reckoning[D]. Beijing: Beijing Institute of Technology, 2006
    [11]
    罗浩, 方志祥, 萧世伦. 基于谷歌眼镜传感器的曲线拟合计步算法[J]. 计算机工程与应用, 2016, 52(18): 40-45 doi: 10.3778/j.issn.1002-8331.1507-0189

    Luo Hao, Fang Zhixiang, Shaw Shihlung. Curve Fitting Step Counting Algorithm Based on Google Glass Sensor[J]. Computer Engineering and Appli-cations, 2016, 52(18): 40-45 doi: 10.3778/j.issn.1002-8331.1507-0189
    [12]
    Klein I, Solaz Y, Ohayon G. Pedestrian Dead-Recko-ning with Smartphone Mode Recognition[J]. IEEE Sensors Journal, 2018, 18(18): 7 577-7 584 doi: 10.1109/JSEN.2018.2861395
    [13]
    Fang Zhixiang, Jiang Yuxin, Xu Hong, et al. An In-visible Salient Landmark Approach to Locating Pe-destrians for Predesigned Business Card Route of Pe-destrian Navigation[J]. Sensors, 2018, 18(9): 1-17 doi: 10.1109/JSEN.2018.2815438
    [14]
    方志祥, 徐虹, 萧世伦, 等. 绝对空间定位到相对空间感知的行人导航研究趋势[J]. 武汉大学学报·信息科学版, 2018, 43(12): 2 173-2 182 doi: 10.13203/j.whugis20180170

    Fang Zhixiang, Xu Hong, Shaw Shihlung, et al. Pedestrian Navigation Research Trend: From Abso-lute Space to Relative Space-Based Approach[J]. Geomatics and Information Science of Wuhan Uni-versity, 2018, 43(12): 2 173-2 182 doi: 10.13203/j.whugis20180170
    [15]
    Caduff D, Timpf S. On the Assessment of Land-mark Salience for Human Navigation[J]. Cognitive Processing, 2008, 9(4): 249-267 doi: 10.1007/s10339-007-0199-2
    [16]
    May A, Ross T, Bayer S, et al. Pedestrian Navi-gation Aids: Information Requirements and Design Implications[J]. Personal and Ubiquitious Compu-ting, 2003, 7(6): 331-338 doi: 10.1007/s00779-003-0248-5
    [17]
    张星, 李清泉, 方志祥. 面向行人导航的地标链生成方法[J]. 武汉大学学报·信息科学版, 2010, 35(10): 1 240-1 244 http://ch.whu.edu.cn/article/id/1091

    Zhang Xing, Li Qingquan, Fang Zhixiang. An Ap-proach of Generating Landmark Chain for Pedestrian Navigation Applications[J]. Geomatics and Informa-tion Science of Wuhan University, 2010, 35(10): 1 240-1 244 http://ch.whu.edu.cn/article/id/1091
    [18]
    张星, 李清泉, 方志祥, 等. 顾及地标与道路分支的行人导航路径选择算法[J]. 武汉大学学报·信息科学版, 2013, 38(10): 1 239-1 242 http://ch.whu.edu.cn/article/id/2764

    Zhang Xing, Li Qingquan, Fang Zhixiang, et al. A Distributed Metadata Management Method Based on Separation of Road and Write[J]. Geomatics and In-formation Science of Wuhan University, 2013, 38 (10): 1 239-1 242 http://ch.whu.edu.cn/article/id/2764
    [19]
    Dempster A. Upper and Lower Probabilities In-duced by a Multivalued Mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2): 325-339 doi: 10.1214/aoms/1177698950
    [20]
    Shafer G. A Mathematical Theory of Evidence [M]. New York: Princeton University Press, 1976
    [21]
    May A J, Ross T, Bayer S H, et al. Pedestrian Navigation Aids: Information Requirements and De-sign Implications[J]. Personal and Ubiquitous Com-puting, 2003(7): 331-338
    [22]
    柯小路. 证据理论中信任函数的合成方法研究与应用[D]. 合肥: 中国科学技术大学, 2016

    Ke Xiaolu. A Research on Combination of Belief Functions with Applications in Evidence Theory [D]. Hefei: University of Science and Technology of China, 2016
    [23]
    王永仲. 鱼眼镜头光学[M]. 北京: 科学出版社, 2006

    Wang Yongzhong. Fish Eye Lens Optics[M]. Bei-jing: Science Press, 2006
  • Related Articles

    [1]Gan Wenxia, Pan Junjie, Geng Jing, Wang Huini, Hu Xiaodi. A Fusion Method for Infrared and Visible Images in All-weather Road Scenes[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240173
    [2]SONG Zhina, SUI Haigang, LI Yongcheng. A Survey on Ship Detection Technology in High-Resolution Optical Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1703-1715. DOI: 10.13203/j.whugis20200481
    [3]XIANG Tianzhu, GAO Rongrong, YAN Li, XU Zhenliang. Region Feature Based Multi-scale Fusion Method for Thermal Infrared and Visible Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 911-917. DOI: 10.13203/j.whugis20141007
    [4]ZHANG Lifu, YANG Hang, FANG Conghui, PAN Mao. Thermal Infrared Target Recognition Using Multi-scale Fractal Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 339-342.
    [5]YING Shen, LI Lin, GAO Yurong. Pedestrian Simulation in Urban Space Based on Visibility Analysis and Agent Techniques[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1367-1370.
    [6]XU Hanqiu, ZHANG Tiejun, LI Chunhua. Cross Comparison of Thermal Infrared Data Between ASTER and Landsat ETM~+ Sensors[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 936-940.
    [7]ZHU Zhongmin, GONG Wei, YU Juan, TIAN Liqiao. Applicability Analysis of Transformation Models for Aerosol Optical Depth and Horizontal Visibility[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1086-1090.
    [8]MAO Yue, SONG Xiaoyong, FENG Laiping. Visibility Analysis of X-ray Pulsar Navigation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 222-225.
    [9]YANG Guijun, LIU Qinhuo, LIU Qiang, GU Xingfa. Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 786-790.
    [10]GONG Shengrong, YANG Shanchao. A Visible Watermarking Algorithm Holding Image Content[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 757-760.
  • Cited by

    Periodical cited type(2)

    1. 徐辛超,高阳. 融合跳跃连接网络与双重注意力机制的可见光与红外遥感影像匹配方法. 地球信息科学学报. 2025(03): 766-783 .
    2. 姚国标,张成成,龚健雅,张现军,李兵. 非线性尺度空间改进的光学与SAR影像自动配准. 武汉大学学报(信息科学版). 2024(12): 2249-2260 .

    Other cited types(0)

Catalog

    Article views (1266) PDF downloads (182) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return